

RClicks: Realistic Click Simulation for Benchmarking Interactive Segmentation

Anton Antonov Andrey Moskalenko Denis Shepelev Alexander Krapukhin Konstantin Soshin Anton Konushin Vlad Shakhuro

https://emb-ai.github.io/rclicks-project/

Interactive segmentation (IS)

Goal: to obtain high-quality pixel-level masks with limited user interaction

Among various types of user input, **clicks** are the most common

IS evaluation

Evaluation requires user inputs, gathering real-user data is impractical

IS quality is assessed with a **baseline** clicking strategy: clicks are put in the center of the largest erroneous area

(4)

IS method might be **overfitted** for **baseline** clicks

To evaluate IS methods in a realistic way we propose a user **clickability model**

Real-users clicks

clicks simulated by clickability model and baseline click

clicks distribution predicted by clickability model

Contributions

- Multi–round interaction dataset of **475 544 clicks**
- Novel **clickability model** for realistic click simulation
- RClicks a benchmark for measurement of real-world annotation time and robustness of IS methods
- **Difficulty score** for IS instances on first real clicks

Data collection procedure

Data collection procedure

Users' click data

Our dataset is **based on** GrabCut, Berkeley, DAVIS, COCO-MVal, and TETRIS

To obtain error masks **for the subsequent rounds**, we applied SAM, SimpleClick, RITM, and synthetic distortions

We collected a dataset of clicks **both on PC** and **mobile devices**

Dataset	First #	Subseq. #	Sum #
GrabCut	2 395	3 4 2 7	5 822
Berkeley	4859	6937	11 796
DAVIS	16975	23 687	40 662
COCO-MV	38 097	53 926	92 023
TETRIS	123 023	202 218	325 241
All	185 349	290 195	475 544

Number of collected clicks for each dataset in interaction rounds

Users' click data

Our dataset is **based on** GrabCut, Berkeley, DAVIS, COCO-MVal, and TETRIS

To obtain error masks **for the subsequent rounds**, we applied SAM, SimpleClick, RITM, and synthetic distortions

We collected a dataset of clicks **both on PC** and **mobile devices**

Dataset	First #	Subseq. #	Sum #		
GrabCut	2 395	3 4 2 7	5 822		
Berkeley	4859	6937	11 796		
DAVIS	16975	23 687	40 662		
COCO-MV	38 097	53 926	92 023		
TETRIS	123 023	202 218	325 241		
All	185 349	290 195	475 544		

Number of collected clicks for each dataset in interaction rounds

Clickability model

Proposed clickability prediction pipeline

Clickability model

Examples of considered clickability models:

- (a) visualizes target object (white contour) and ground-truth clicks (green points)
- (b) (d) depict uniform distribution (UD), distance transform (DT), and saliency map (SM) respectively

(e) - our predicted clickability map

Evaluation of various clickability models on real-user clicks of TETRIS validation part

Our approach **outperforms** existing clicking strategies in terms of the proximity of samples to real-user clicks

Model	KS↑	$PL_1 \downarrow$	WD \downarrow	$NSS\uparrow$	PDE↑
UD	0.10	0.57	0.17	3.99	1.36E-05
DT	0.14	0.52	0.16	6.45	2.76E-05
SM	0.13	0.51	0.15	4.79	1.83E-05
Ours	0.55	0.40	0.08	9.11	4.69E-05

Qualitative example

Examples of real and predicted users' clicks and clickability map

RClicks benchmark

Using **Clicking Groups**, we propose the following objective IS robustness metrics:

- **Sample NoC** mean and standard deviation of clicks (max 20) needed to achieve 90% IoU averaged across clicking groups $(G_1 - G_{10})$
- ΔSB relative increase in Sample NoC compared to a baseline strategy
- $\circ \quad \Delta GR relative increase in annotation time between G_1 and G_{10} clicking groups$

Evaluation results

			DAVIS		COCO-MVal			TETRIS			
Method	Backbone	Data	$NoC_{20}@90$		$NoC_{20}@90$			$NoC_{20}@90$			
			Sample	ΔSB	ΔGR	Sample	ΔSB	ΔGR	Sample	ΔSB	ΔGR
			(±std)	(+%)	(+%)	(±std)	(+%)	(+%)	(±std)	(+%)	(+%)
GPCIS	RN50	C+L	6.44±0.85	16.88	53.65	4.74±1.31	26.43	79.00	3.87±0.79	19.55	56.43
	HR18	C+L	6.23±0.67	<u>6.92</u>	16.13	3.71±0.78	10.27	20.22	3.69±0.52	7.02	13.95
RITM	HR18-IT	C+L	6.15±0.83	11.37	31.14	3.22±0.83	15.84	37.01	3.48±0.60	11.59	23.99
	HR32-IT	C+L	5.90±0.89	18.34	51.07	3.24±0.83	15.50	37.31	3.44±0.65	17.47	30.69
AdaptClick	ViT-B	C+L	4.97±0.40	8.60	15.14	2.93±0.58	9.44	19.75	2.62±0.37	6.99	12.94
	ViT-B	C+L	5.32±0.54	9.05	26.33	3.07±0.70	11.72	23.60	2.73±0.41	8.86	16.64
SimpleClick	ViT-L	C+L	5.03±0.42	8.71	16.67	2.67±0.56	8.05	20.88	2.46±0.35	7.11	10.01
	ViT-H	C+L	5.00±0.42	7.06	12.29	2.57±0.54	<u>6.14</u>	17.65	<u>2.36±0.33</u>	6.94	10.83
CFR-ICL	ViT-H	C+L	4.53±0.46	9.32	18.47	2.70±0.63	9.58	24.13	2.12±0.34	8.76	14.33
	ViT-B	SA-1B	5.30±0.53	8.26	11.27	4.91±0.79	9.88	15.73	3.04±0.51	11.17	10.06
SAM	ViT-L	SA-1B	5.21±0.41	8.82	11.59	4.81±0.63	8.89	14.97	2.60±0.40	8.11	7.08
	ViT-H	SA-1B	5.42±0.49	8.00	15.02	5.14±0.68	7.63	15.61	2.66±0.38	5.95	8.50
SAM-HQ	ViT-L	SA-1B	5.19±0.48	8.58	15.69	5.05±0.74	9.64	13.50	2.81±0.51	11.02	7.69
	ViT-H	SA-1B	5.16±0.44	8.15	18.36	4.97±0.68	7.71	12.36	2.75±0.41	6.78	7.95
SAM 2	Hiera-T	SA-V	4.65±0.28	4.86	7.46	3.86±0.64	7.79	13.14	3.11±0.50	9.45	3.57
	Hiera-B+	SA-V	4.67±0.33	8.49	15.86	3.75±0.61	7.44	12.67	3.02±0.47	9.51	4.79
	Hiera-L	SA-V	4.61±0.29	9.51	13.28	3.84±0.62	9.12	12.35	2.83±0.41	7.46	4.10
	Hiera-H	SA-V	4.39±0.23	7.55	10.03	3.42±0.51	6.12	9.34	2.74±0.38	<u>6.51</u>	4.87
SAM 2.1	Hiera-T	SA-V	4.67±0.32	7.08	8.99	3.91±0.68	8.45	11.88	3.11±0.50	9.75	3.35
	Hiera-B+	SA-V	4.63±0.32	9.72	14.30	3.76±0.62	8.16	12.35	3.04±0.49	9.59	4.70
	Hiera-L	SA-V	4.67±0.32	11.75	15.39	3.88±0.62	7.47	11.95	2.87±0.43	8.35	4.51
	Hiera-H	SA-V	4.44±0.25	10.35	9.48	3.51±0.52	6.78	<u>9.91</u>	2.81±0.39	7.41	4.50

Evaluation results of stateof-the-art interactive segmentation methods

According to **Sample NoC** and **ΔGR** values, the best annotation time is achieved by SAM 2, CFR-ICL and SimpleClick, while the two latter methods are less robust compared to SAM-like methods

Datasets' difficulty

Scatter plot of the mean vs. standard deviation (STD) of IoU for the first real-users clicks

Difficulty score for every dataset — Noise to Signal Ratio (NSR). The higher score means the harder dataset for annotation:

 $NSR = \frac{STD \text{ of } IoU}{Mean \text{ of } IoU}$

Main findings

Baseline strategy underestimates the real-world **annotation time** from **5% up to 29%**

DAVIS, with its 24.15 NSR, stands as the **hardest** dataset for annotation

Currently there is **NO segmentation method** that is optimal in terms of both performance and robustness on all datasets

Annotation time of users from different clicking groups varies from **3% up to 79%**