Can Large Language Models Analyze Graphs like Professionals ? A Benchmark, Datasets and Models

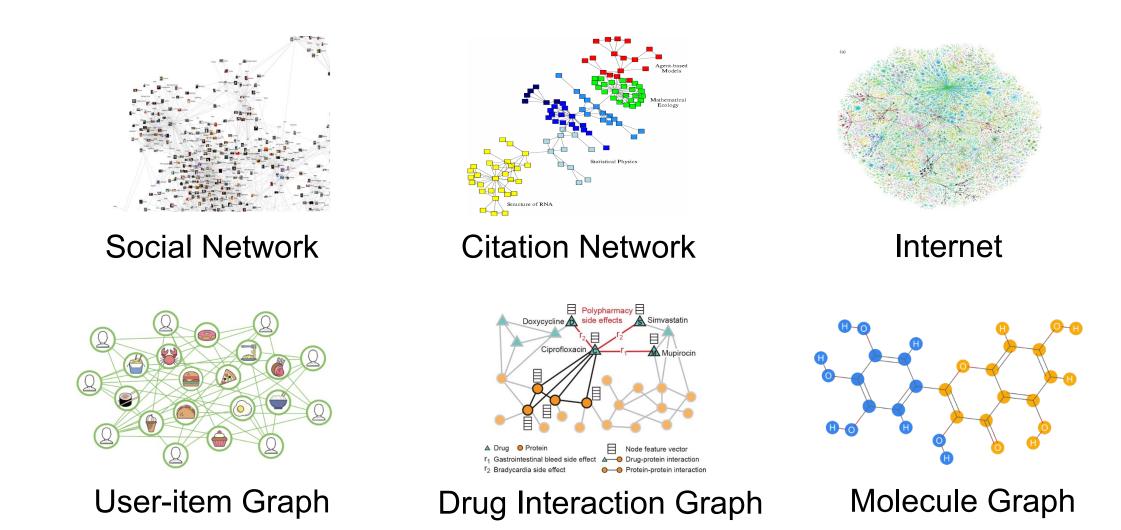
NeurIPS 2024 Datasets and Benchmarks Track

Ran Li

Tsinghua University

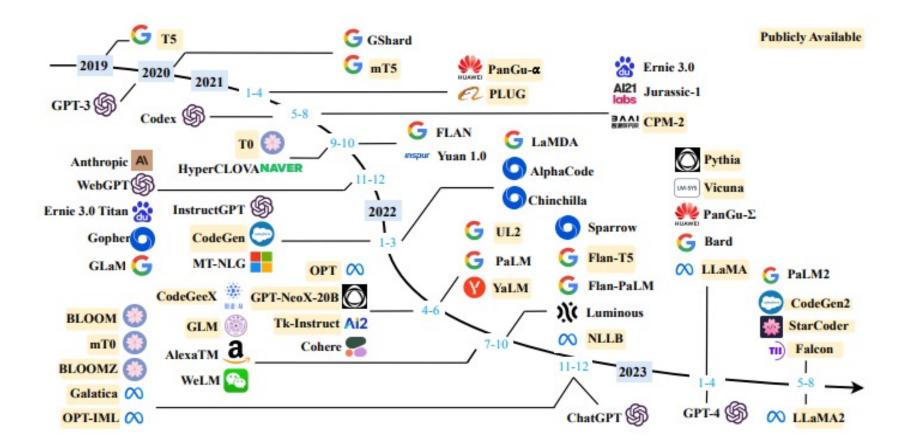
• Benchmark

• Datasets and Models



• Benchmark

• Datasets and Models


Graph Data

Graph (network) is a common language for describing relational data.

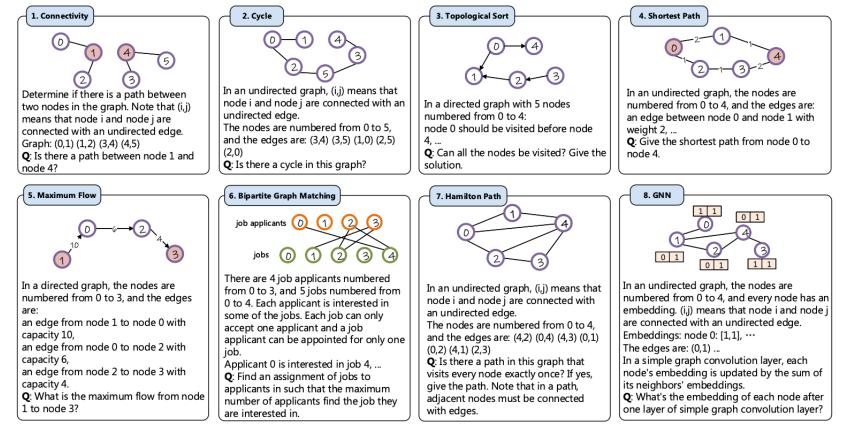
Large Language Models (LLMs)

With billions of parameters, LLMs have shown abilities towards artificial general intelligence (AGI), e.g., understanding, reasoning, planning, etc.

[2] Zhao W X, Zhou K, Li J, et al. A survey of large language models[J]. arXiv preprint arXiv:2303.18223, 2023.

The Need for Graph Reasoning

A large model is any model that is trained on broad data and can be adapted to a wide range of downstream tasks.



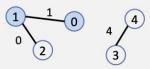
Large models have become a reality in language, vision, and speech, but not good at graph reasoning.

[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brun-skill, et al., "On the opportunities and risks of foundation models," arXiv preprint arXiv:2108.07258, 2021

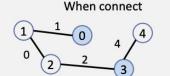
Previous Benchmarks for Graph Reasoning

NLGraph is a benchmark to explore the capability of large language models in analyzing graph-related problems.

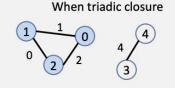
It has 8 types of problems, including basic graph theory and GNN.


[3] Heng Wang et al. Can language models solve graph problems in natural language? Advances in Neural Information Processing Systems, volume 36, pages 30840–30861. Curran Associates, Inc., 2023.

Previous Benchmarks for Graph Reasoning

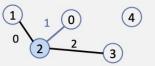

LLM4DyG: A benchmark for dynamic graphs with spatial and temporal problems.

Temporal When link

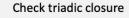

Spatial What neighbors at time

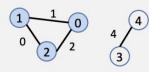
Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0, 1, 1), (3, 4, 4)]. When are node 0 and node 1 linked? Answer: 1

Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0, 1, 1), (2, 3, 2), (3, 4, 4)]. When are node 0 and node 3 first connected? Answer: 2

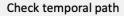


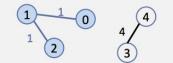
Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0, 1, 1), (2, 0, 2), (3, 4, 4)]. When are node 0, 1 and 2 first close the triad? Answer: 2


 $\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \end{array}$

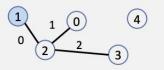

Question: Given an undirected dynamic graph with the edges [(1, 2, 1), (0, 1, 1), (3, 4, 4)]. What nodes are linked with node 1 at time 1? Answer: [0, 2]

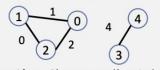
What neighbors in periods


Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (2, 0, 1), (2, 3, 2)]. What nodes are linked with node 2 at or after time 1? Answer: [0, 3]



Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (0, 1, 1), (2, 0, 2), (3, 4, 4)]. Did node 0, 1 and 2 form a closed triad? Answer: Yes


Spatial-Temporal


Question: Given an undirected dynamic graph with the edges [(1, 2, 1), (0, 1, 1), (3, 4, 4)]. Did nodes 0, 1, 2 form a chronological path? Answer: Yes

Find temporal path

Question: Given an undirected dynamic graph with the edges [(1, 2, 0), (2, 0, 1), (2, 3, 2)]. Find a chronological path starting from node 1. Answer: [1, 2, 3]

Sort edge by time

Question: Given an undirected dynamic graph with the edges [(2, 0, 2), (3, 4, 4), (1, 2, 0), (0, 1, 1)]. Sort the edges by time from earliest to latest. Answer: [(1, 2, 0), (0, 1, 1), (2, 0, 2), (3, 4, 4)].

[4] Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Yijian Qin, and Wenwu Zhu. Llm4dyg: Can large language models solve spatial-temporal problems on dynamic graphs? <u>https://arxiv.org/pdf/2310.17110</u>, 2024.

• Benchmark

• Datasets and Models

Motivation of ProGraph Benchmark

Motivation

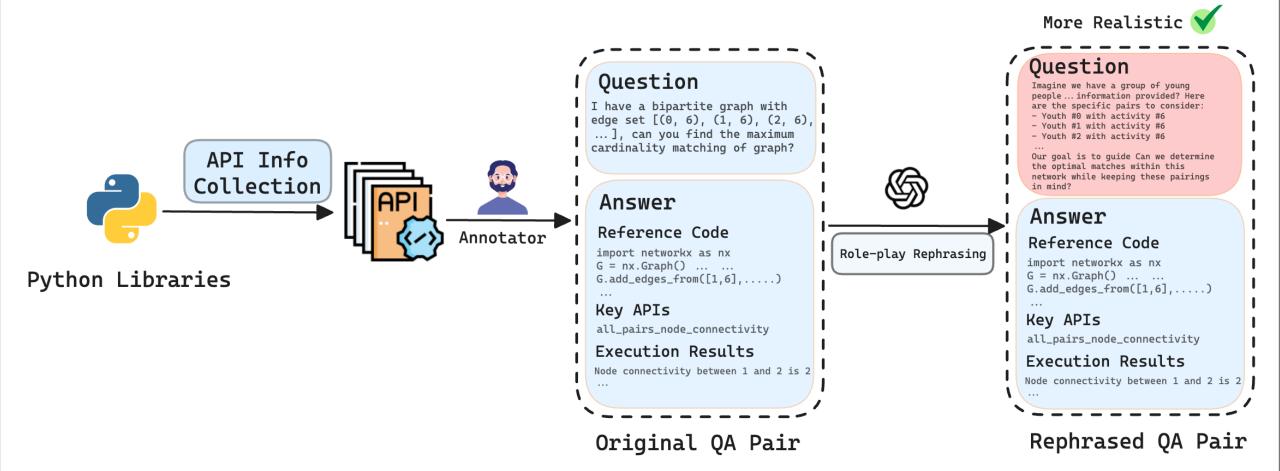
- Previous LLM benchmarks for graph analysis have several drawbacks:
 - Graphs have to be inputted via prompts, and thus the graph nodes size are quite small.
 - Typically a few dozens of nodes.
 - The benchmarks require step-by-step reasoning ability of LLMs.
 - The reasoning depths of current LLMs are still shadow.
 - The questions are abstract and monotonous in form.
 - Lacking context from real-world application scenarios.

Motivation of ProGraph Benchmark

Motivation

- Consider the scenario that
 - A human expert is asked to find the shortest path in a million-scale graph...
 - She will probably write a few lines of Python codes based on NetworkX, instead of

directly reasoning over the raw inputs.


Can large language models analyze graphs like professionals?

	1	0	0	1 2			
Aspects	ProGraph (this work)	NLGraph ([52])	LLM4DyG ([61])	GraphTMI ([15])	GraphInstruct ([33])	GPT4Graph ([20])	GraphWiz (9)
Basic Graph Theory	1	1	1	1	1	1	1
Graph Statistical Learning	1	×	×	1	×	1	×
Graph Embedding	 Image: A set of the set of the	 Image: A second s	×	×	×	×	×
Access to External APIs	1	×	×	×	×	×	×
Real-world Context	 Image: A second s	×	×	×	×	×	×
Scalability	up to 10^6	up to 10^1	up to 10^1	up to 10^2	up to 10^1	up to 10^1	up to 10^1

Table 1: Comparisons among different graph analysis benchmarks for LLMs.

ProGraph Benchmark

We propose GraphPro benchmark to evaluate the capability of LLMs in leveraging external APIs for graph analysis.

Statistics of ProGraph and a task example.

		Answer Difficulty				
	True/False	Calculation	Drawing	Hybrid	Easy	Hard
Basic Graph Theory	32	240	25	15	257	55
Graph Statistical Learning	7	115	7	25	43	111
Graph Embedding	0	30	0	16	0	46
Total	39	385	32	56	300	212

Table 2: Statistics of ProGraph.

Question

We're examining a simplified model of an ecosystem where [...], we've mapped out a series of interactions as follows: [(1, 2), (1, 3), (2, 3), (2, 4), (3, 5), (4, 5)]. [...] Can we analyze our network to reveal the minimum number of species that would need to be removed to disrupt the direct connection between any two species in this web? [...]

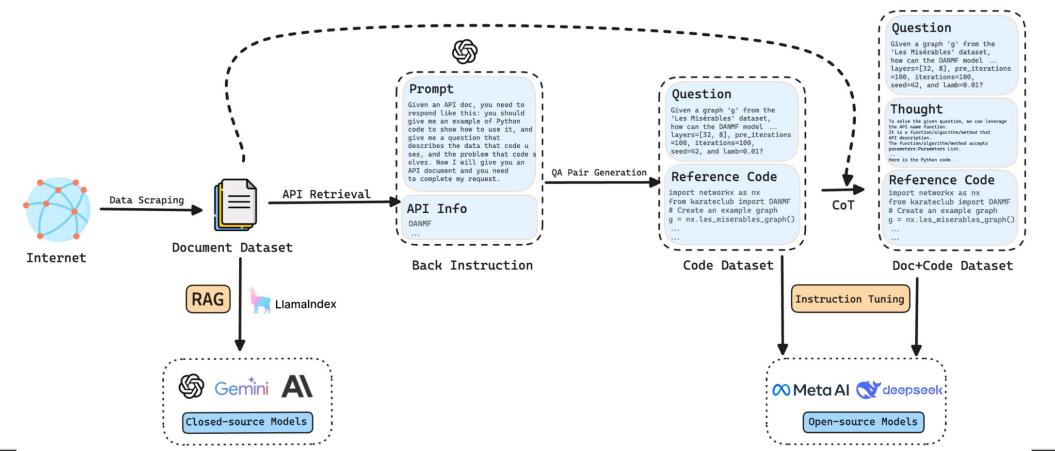
Answer

Node connectivity between 1 and 2 is 2

We conducted experiments on the GraphPro benchmark and evaluated the capability of mainstream LLMs for graph analysis.

Basic Graph Theory		Graph Statistical Learning		Graph Embedding		Overall		
Model	Pass Rate	Accuracy	Pass Rate	Accuracy	Pass Rate	Accuracy	Pass Rate	Accuracy
Claude 3 Haiku	52.9	31.6	23.4	9.7	32.6	2.9	42.2	22.4
Claude 3 Sonnet	57.1	33.2	15.6	4.6	10.9	0.0	40.4	21.6
Claude 3 Opus	69.2	<u>47.3</u>	31.2	<u>15.1</u>	47.8	14.5	55.9	<u>34.7</u>
GPT-3.5	64.1	35.1	24.7	8.4	15.2	1.1	47.9	24.0
GPT-4 turbo	72.4	42.1	<u>39.0</u>	14.8	<u>41.3</u>	<u>12.0</u>	59.6	31.2
GPT-40	<u>69.9</u>	48.1	48.7	21.4	32.6	5.8	60.2	36.3
Gemini 1.0 Pro	48.7	27.7	9.1	1.7	19.6	3.3	34.2	17.7
Gemini 1.5 Pro	59.6	37.2	21.4	6.6	13.0	1.8	43.9	24.8
Llama 3	36.5	17.3	12.3	3.8	15.2	0.4	27.3	11.7
Deepseek Coder	56.1	33.8	30.5	9.8	30.4	7.6	46.1	24.2

Table 6: Performance (%) of different models on ProGraph.



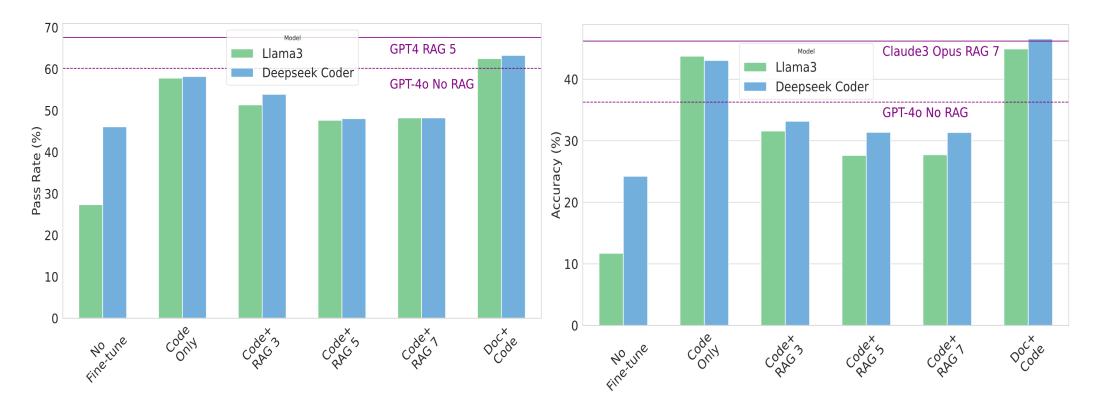
• Benchmark

• Datasets and Models

LLM4Graph Datasets

- We propose LLM4Graph datasets to enhance the capability of LLMs for graph analysis.
 - API documents of six Python libraries:
 - can be used to improve closed-sourced LLMs via RAG (top-k: 3, 5, 7)
 - Auto-generated **QA** pairs via back-instructing GPT-4:
 - can be used to improve open-sourced LLMs via instruction tuning

LLM4Graph Datasets

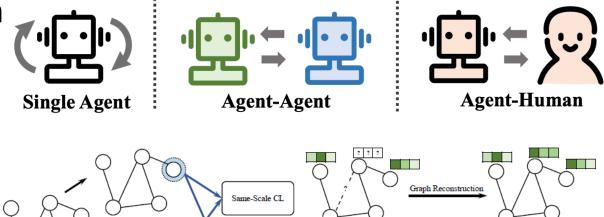

- We propose LLM4Graph datasets to enhance the capability of LLMs for graph analysis.
 - API documents of six Python libraries:
 - can be used to improve closed-sourced LLMs via RAG (top-k: 3, 5, 7)
 - Auto-generated QA pairs via back-instructing GPT-4:
 - can be used to improve open-sourced LLMs via instruction tuning

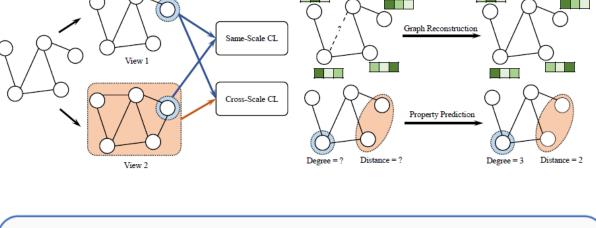
	Document	Code (QA)	Doc+Code (QA)
Basic Graph Theory	1,115	23,324	23,324
Graph Statistical Learning	253	5,136	5,136
Graph Embedding	45	800	800
Total	1,413	29,260	29,260

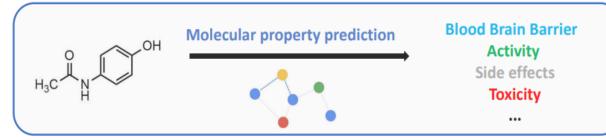
Table 4: Statistics of LLM4Graph datasets.

Experiments

- The accuracies of closed-source models (Claude, GPT and Gemini) on ProGraph are 25-36%, and can be improved to 37-46% with RAG using LLM4Graph as the retrieval pool.
- The accuracies of open-source models (Llama3 and Deepseek Coder) are only 12-24%, but can be improved to 45-47% through instruction-tuning on LLM4Graph.






• Benchmark

• Datasets and Models

- 1. LLM-based Agent / Multi-agent System
 - Reasoning/Tool-using/Decision-making
 - Collaboration/Debate/Competition
- 2. Graph Foundation Model
 - Transformer/Mamba
 - Other general models/methods.
- 3. Application/Evaluation
 - Drug discovery, Urban Computing...
 - Human/AI Feedback
 - Safety/Privacy Issues

Thanks