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Neural Networks for computer systems (NN4Sys)

For example, NN for
• OS scheduler => better job completion time
• database index => smaller memory footprint, faster lookup
• network routing => more efficient packet routing
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However, NN4Sys… 

• …, despite improving the average performance, …
• …may do much worse in the worst-case scenarios.



However, NN4Sys… 

• …, despite improving the average performance, …
• …may do much worse in the worst-case scenarios.

For example, NN for
• OS scheduler => job starvation
• database index => pointing to wrong positions
• network routing => blackholes (loops in the chosen path)



The problem is fundamental

• NNs are complicated black boxes.
• Hard to understand what a NN has learned.
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The problem is fundamental

• NNs are complicated black boxes.
• Hard to understand what a NN has learned.

• NN’s behaviors are not well-defined.
• NNs may produce unexpected results.

• Meanwhile, computer systems require safety properties.

implies



NN-Verification to the rescue

NN-Verification can provide a “lower bound” for NN4Sys.
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NN-Verification to the rescue

NN-Verification can provide a “lower bound” for NN4Sys.
• Crucially, NN-Verification works well for NN4Sys because

• NN4Sys has simple models;
• NN4Sys has clear semantics.
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Our vision: NN4Sys + NN-Verification

• We argue: NN4Sys + NN-verification whenever possible
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Our vision: NN4Sys + NN-Verification

• We argue: NN4Sys + NN-verification whenever possible
• However, NN4Sys have characteristics…
    …that today’s verifiers do not support well.

NN4SysBench

NN4SysNN-Veri

check safety properties



NN4SysBench: a benchmark suite for NN-Verification 
whose benchmarks are from impactful NN4Sys
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supervised learning

NN4SysBench: a benchmark suite for NN-Verification 
whose benchmarks are from impactful NN4Sys
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learned 
adaptive bitrate 

learned distributed 
system scheduler 

reinforcement learning

specifications

learned Internet 
congestion control 

…

• Basic properties: in good (or bad) 
network condition, model does not 
decrease(increase ) packet sending 
rates.



An (incomplete) list of NN4Sys characteristics

1. small number of input dimensions

2. large number of specification entries

3. hierarchical models

4. temporal specification

5. monotonicity specification
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An (incomplete) list of NN4Sys characteristics

1. small number of input dimensions

2. large number of specification entries

3. hierarchical models

4. temporal specification

5. monotonicity specification

specifications

learned Internet 
congestion control 

…

• Basic properties: in good (or bad) 
network condition, model cannot 
choose the worst (or best) resolution.



• Classic congestion controller: Cubic, BBR
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• Classic congestion controller: Cubic, BBR
• Learned congestion control: use NNs to 

replace the congestion control algorithm

Learned congestion control

learned congestion 
controller (NNs)

network 
condition(e.g., 
sending ratio)

change of sending rate

Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv 
Tamar. A deep reinforcement learning perspective on internet congestion 

control. In International Conference on Machine Learning. PMLR, 2019 



Specifications of learned congestion control

• When the network condition changes from 
bad to good, the sender eventually increases 
packet sending rates.
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Specifications of learned congestion control

• When the network condition changes from 
bad to good, the sender eventually increases 
packet sending rates.

learned congestion 
controller (NNs)

network condition

change of sending rate

learned congestion 
controller (NNs)

network condition

change of sending rate

network link

……
network link

learned congestion 
controller (NNs)

change of sending rate

Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and Aviv 
Tamar. A deep reinforcement learning perspective on internet congestion 

control. In International Conference on Machine Learning. PMLR, 2019 

characteristic 4: temporal specification

multiple steps



Verification runtime for different benchmarks

Evaluation on 2 verifiers: ⍺β-crown and marabou



Code, paper and contact info at website: https://shuyilinn.github.io/BenchmarkWeb/

Contribution: Previous version adopted by the Verification of Neural 
Networks Competition (VNN-Comp) for 3 consecutive years

NN4SysBench: Characterizing Neural Network 
Verification for Computer Systems 

https://shuyilinn.github.io/BenchmarkWeb/
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