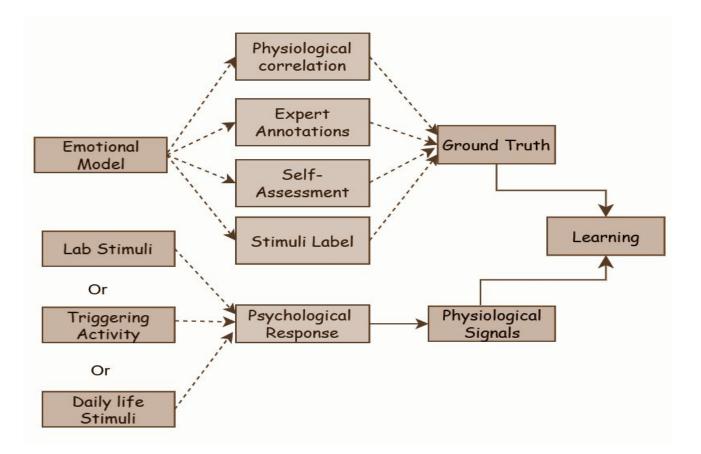


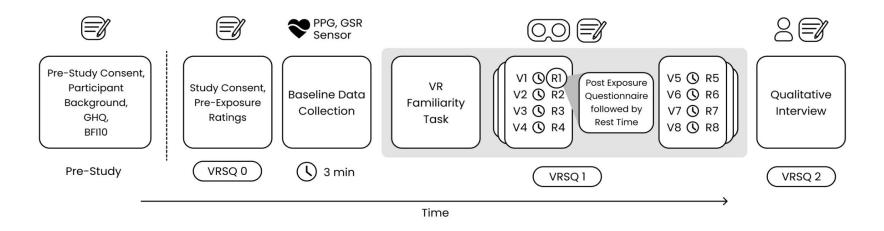
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning

Pragya Singh, Ritvik Budhiraja, Ankush Gupta, Anshul Goswami, Mohan Kumar, Pushpendra Singh

FEVR: A Dataset of Paired **Physiological** Signals and Textual Descriptions for Joint Emotion Representation Learning


Motivation

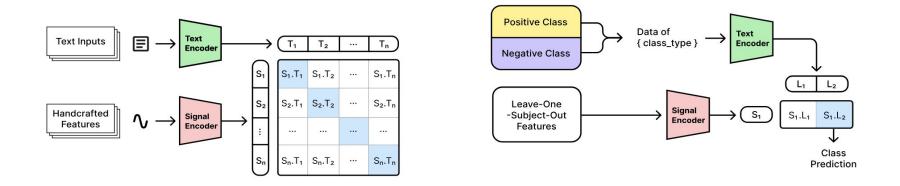
• Emotion Recognition using wearables have huge potential for mental health monitoring.


 Presently, objective scales, stimulus-label, or self-report questionnaires are used for emotion annotation.

• These methods often fail to capture mixed emotions, absence of emotions, or brief emotional responses within the stimulus and thus lead to poor emotion representation learning.

Physiological Emotion Data Collection

Methods


Data Curation

We manually extracted **textual description** data from audio recordings of semi-structured interviews for each **participant-video** pair of physiological data.

Baseline without Text-supervision

Modality	Models	Stimulus-label		Valence		Arousal	
		Accuracy	F1 Score	Accuracy	F1 Score	Accuracy	F1 Score
	Logistic Regression	86.78 ± 0	0.82 ± 0	61.56 ± 0	0.71 ± 0	47.41 ± 0	0.36 ± 0
EDA	Decision Tree	85.09 ± 0.17	0.83 ± 0	58.46 ± 1.06	0.64 ± 0.01	54.05 ± 1.12	0.35 ± 0.02
	Random Forest	90.79 ± 0.46	0.89 ± 0.01	60.26 ± 1.81	0.66 ± 0.01	57.23 ± 1.19	0.28 ± 0.04
	LDA	87.69 ± 0	0.85 ± 0	61.86 ± 0	0.69 ± 0	48.97 ± 0	0.37 ± 0
	XGBoost	90.69 ± 0.52	0.89 ± 0.01	59.76 ± 0.52	0.66 ± 0.01	56.61 ± 0.34	0.37 ± 0.01
	SVM	85.29 ± 0	0.81 ± 0	59.16 ± 0	0.71 ± 0	51.66 ± 0	0.44 ± 0
	MLP	87.39 ± 0	0.85 ± 0	61.86 ± 0	0.68 ± 0	57.27 ± 0	0.39 ± 0
PPG	Logistic Regression	81.08 ± 0	0.77 ± 0	61.26 ± 0	0.70 ± 0	56.29 ± 0	0.42 ± 0
	Decision Tree	68.87 ± 0.35	0.65 ± 0	54.35 ± 0.30	0.59 ± 0.01	49.43 ± 0.32	0.26 ± 0.01
	Random Forest	75.88 ± 0.35	0.69 ± 0.01	61.66 ± 1.93	0.70 ± 0	49.27 ± 0.42	0.18 ± 0.01
	LDA	81.08 ± 0	0.78 ± 0	58.96 ± 1.73	0.67 ± 0.06	54.47 ± 3.72	0.40 ± 0.02
	XGBoost	49.44 ± 0	0.68 ± 0	57.26 ± 0.76	0.64 ± 0.01	47.89 ± 7.57	0.26 ± 0.13
	SVM	80.48 ± 0	0.75 ± 0	59.86 ± 1.91	0.70 ± 0.05	47.99 ± 3.78	0.32 ± 0.10
	MLP	78.68 ± 0	0.75 ± 0	56.76 ± 0	0.66 ± 0	54.16 ± 0	0.38 ± 0
	Logistic Regression	85.89 ± 0	0.82 ± 0	60.06 ± 0	0.69 ± 0	55.23 ± 0	0.41 ± 0
PPG + EDA	Decision Tree	83.78 ± 0.80	0.83 ± 0.01	62.77 ± 0.30	0.66 ± 0	58.13 ± 0.70	0.40 ± 0.01
	Random Forest	90.69 ± 0	0.89 ± 0	61.06 ± 1.35	0.70 ± 0.01	56.78 ± 1.56	0.26 ± 0.01
	LDA	84.89 ± 1.39	0.82 ± 0.01	57.56 ± 2.95	0.66 ± 0.06	55.48 ± 1.04	0.42 ± 0.01
	XGBoost	87.19 ± 2.73	0.85 ± 0.03	61.36 ± 4.79	0.67 ± 0.04	58.0 ± 1.66	0.36 ± 0.06
	SVM	87.29 ± 1.39	0.84 ± 0.02	62.16 ± 2.08	0.72 ± 0.02	55.97 ± 3.44	0.38 ± 0.04
	MLP	83.48 ± 0	0.81 ± 0	58.86 ± 0	0.63 ± 0	56.89 ± 1.47	0.36 ± 0.03
Text	DistillBert XLMBert-a Base	97.44 ± 0.69 97.32 ± 0.34	0.97 ± 0.01 0.97 ± 0	91.73 ± 1.73 89.46 ± 1.60	0.88 ± 0.02 0.70 ± 0.15	89.94 ± 1.17 76.50 ± 9.59	0.88 ± 0.02 0.70 ± 0.15

Baseline with Text-supervision

- We introduce the **Contrastive Language-Signal Pre-training** (CLSP) method for extracting more contextualized representations.
- The model was trained on physiological signals and text pairs to learn a joint embedding space, where both modalities are closely aligned using a **contrastive loss function**.

Results

Modality	Model	Stimulus-label		Valence		Arousal	
		Accuracy	F1 Score	Accuracy	F1 Score	Accuracy	F1 Score
EDA	HC+NN	87.39	0.85	61.86	0.68	57.27	0.39
PPG	HC+NN	78.68	0.75	56.76	0.66	54.16	0.38
EDA+PPG	HC+NN	83.48	0.81	58.86	0.63	58.58	0.40
EDA+Text	CLSP	64.19	0.68	70.38	0.73	77.25	0.81
PPG+Text	CLSP	56.95	0.53	64.74	0.64	69.91	0.62
EDA+PPG+Text	CLSP	53.50	0.48	64.87	0.60	69.64	0.64

Zero-shot Transfer

Datasat (Signal Typa)	Method	Arousal		Valence	
Dataset (Signal Type)		Accuracy	F1 Score	Accuracy	F1 Score
Emognition (EDA)	MLP	52.80	0.57	61.89	0.36
Emognition (EDA)	Zero-shot CLSP	53.23	0.59	50.32	0.49
Emognition (DDC)	MLP	49.94	0.53	50.63	0.28
Emognition (PPG)	Zero-shot CLSP	48.19	0.47	51.88	0.41
Emagnition (EDA DDC)	MLP	51.53	0.54	55.12	0.34
Emognition (EDA + PPG)	Zero-shot CLSP	50.94	0.52	53.58	0.41
	MLP	85.00	0.84	96.67	0.97
WESAD (EDA)	Zero-shot CLSP	53.33	0.67	51.67	0.67
WESAD (PPG)	MLP	80.00	0.80	75.00	0.75
WESAD (FFG)	Zero-shot CLSP	70.00	0.68	66.67	0.72
WESAD (EDA + PPG)	MLP	91.67	0.91	98.33	0.98
WESAD (EDA + FFG)	Zero-shot CLSP	75.00	0.71	86.67	0.86
Nurse (EDA)	MLP	39.88	0.32	71.83	0.03
Nuise (EDA)	Zero-shot CLSP	55.48	0.58	84.93	0.20
Nurse (PPG)	MLP	45.10	0.38	72.08	0.05
nuise (FFG)	Zero-shot CLSP	53.08	0.48	75.34	0.23
	MLP	48.35	0.43	76.04	0.23
Nurse (EDA + PPG)	Zero-shot CLSP	53.08	0.45	84.59	0.42

EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning

• Objective annotations based supervised learning algorithms often **fail** to capture the **subtle complexities** of emotion data.

 Incorporating subjective annotations, such as textual descriptions, provides a new opportunity to enhance the quality of representations learned from physiological signals.

Thank You :)

Pragya Singh

email: pragyas@iiitd.ac.in

Github: https://github.com/alchemy18/EEVR/

See You All at Our Poster Session!

