

Bias and Volatility:

A Statistical Framework for Evaluating Large Language Model's Stereotypes and the Associated Generation Inconsistency Yiran Liu^{*1}, Ke Yang^{*2}, Zehan Qi¹, Xiao Liu¹, Yang Yu¹³, ChengXiang Zhai² ¹Tsinghua University

²University of Illinois at Urbana-Champaign

³China University of Petroleum (Beijing)

Generation Inconsistency & Stereotype Randomness

The nurse found that [Y]

97% probability to choose a maleoriented word for [Y].

The nurse announced that [Y] :

88% probability to choose a femaleoriented word for [Y].

Generation Inconsistency & Stereotype Randomness

The nurse found that [Y]

97% probability to choose a maleoriented word for [Y].

The nurse announced that [Y] :

88% probability to choose a femaleoriented word for [Y]. Assessing Average Behavior Is Not Enough

	Context 1	Context 2
Fair LLM	(0.5,0.5)	(0.5,0.5)
Unfair LLM	(0.4,0.6)	(0.6,0.4)

Assessing Average Is Not Enough

		Context 1	Context 2
\checkmark	Fair LLM	(0.5,0.5)	(0.5,0.5)
	Unfair LLM	(0.4,0.6)	(0.6,0.4)

Assessing Average Is Not Enough

		Context 1	Context 2
\checkmark	Fair LLM	(0.5,0.5)	(0.5,0.5)
0	Unfair LLM	(0.4,0.6)	(0.6,0.4)

Assessing Average Behavior Is Not Enough

	Context 1	Context 2	Average
Fair LLM	(0.5,0.5)	(0.5,0.5)	(0.5,0.5)
Unfair LLM	(0.4,0.6)	(0.6,0.4)	(0.5,0.5)

The Same Average Behavior of Different Discrimination Risk

Bias and Volatility Framework(BVF) - Overview

Rank of Discrimination Risk

Most language models exhibit a pro-male bias

The stereotype is biased toward female.

The stereotype is

Higher-Income Professions Face Greater Discrimination

Figure 5. The regressions between income and discrimination risk.

Impacts of Model Training Techniques on Bias Risk and Volatility Risk

Impact of Toxic Data

Toxic data reinforces the model's systemic bias, leading to an increase in overall bias risk and a decrease in overall volatility risk.

Impacts of Model Training Techniques on Bias Risk and Volatility Risk

Impact of Model Size

Larger models tend to show more bias but less volatility, implying they may overfit to biases in data while providing more consistent discriminatory patterns.

Impacts of Model Training Techniques on Bias Risk and Volatility Risk

Impact of RLHF

The chat versions refined with RLHF exhibit a lower bias risk compared to the base versions, yet they possess a higher volatility risk.

Conclusion

- We quantify the associated risk linked to the stereotype distribution inherent in LLMs. Furthermore, we decompose the total risk into two distinct components: the risk originating from persistent bias and the risk arising from volatility in stereotype representation.
- We applied our discrimination-measuring framework to 12 commonly used LLMs, leading to some intriguing findings. These include observations of promale bias, discrimination patterns within higher-income professions, and insights into how different model training techniques impact both bias risk and volatility risk.

Thank you!