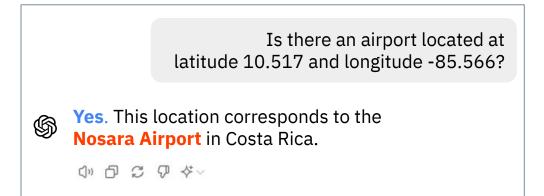


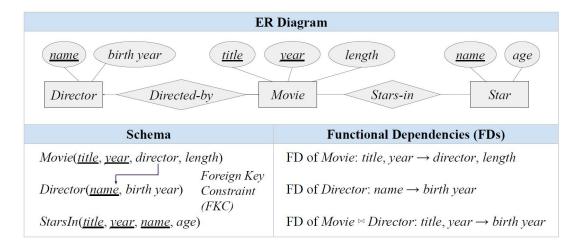
ERBench


: An Entity-Relationship based Automatically Verifiable Hallucination Benchmark for LLMs (*NeurIPS'24 Database and Benchmark Spotlight*)

Jio Oh^{*1}, Soyeon Kim^{*1}, Junseok Seo¹, Jindong Wang², Ruochen Xu³, Xing Xie², Steven Euijong Whang¹

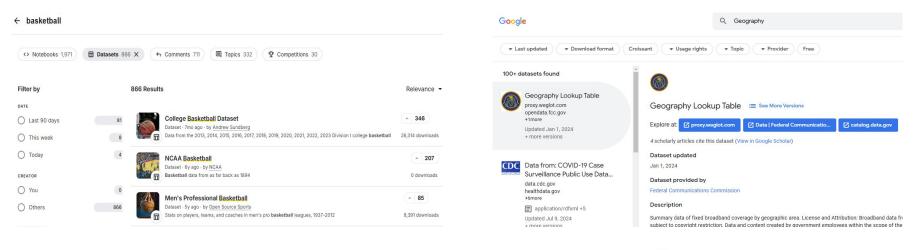
* Equal contribution ¹KAIST ²Microsoft Research Asia ³Microsoft Azure

Hallucination of Large Language Models (LLMs)


- Hallucination occurs when LLMs generate false or non-existent information
- Factual hallucination greatly undermines reliability and trustworthiness of LLMs

Correct Answer, Incorrect Rationale Should be **Catsa Airport**

Relational Databases (RDBs)


- RDBs are based on the relational data model and assume a fixed schema
- A fixed schema enables data integrity based on database design theory
- Integrity constraints like FKCs and FDs can be utilized to construct QA pairs

What makes RDBs useful for LLM Benchmarking?

- RDBs (Tables) are everywhere across various domains
 - Anyone can easily create a table of her/his own interest

kaqo

How does ERBench utilizes RDBs?

- ERBench supports automatic rationale evaluation w/ Functional Dependency (FD)
 - **FD** is a relationship between two sets of attributes (X, Y), where X values determine Y values
 - Notation: X -> Y
 - Helps to determine the *"important"* keyword in the model's rationale.
 - Example: Director, Star, Released Year -> Movie Name

Director	Star	R-Year	<u>Movie Name</u>
J. Cameron	L. DiCaprio	1997	Titanic

Example (Q - question, A - model answer)

Q: Is there a movie, released in 1997, starring Leonardo DiCaprio where James Cameron is the director? A: **Yes** ... The movie is **"Titanic"**.

How does ERBench utilizes RDBs?

- ERBench supports easy multi-hop question generation w/ Foreign Key Constraint
 - Foreign Keys (FKs) are attribute(s) that references the primary key in another table
 - \circ $\$ All you need is a single join operation!

<u>Movie Name (PK)</u>	Director (FK)				1	<u>Movie Name (PK)</u>	Director (FK)	Born Year
Titanic	James Cameron	M	Director (PK)	Born Year		Titanic	James Cameron	1954
		X	James Cameron	1954				
True Lies	James Cameron		James Cameron	17 5 4		True Lies	James Cameron	1954

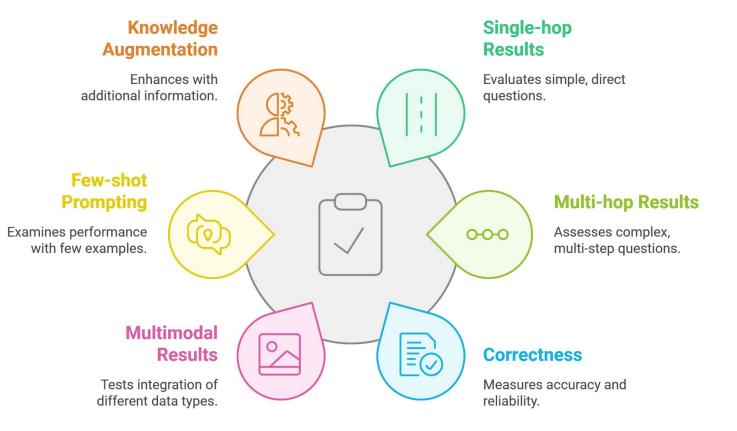
• Example (Here the right keyword will be the Director - Foreign Key)

Q: Was the director who directed the movie titled Titanic born in the 1950s?

A: Yes ... James Cameron, the director of Titanic, was born on August 16, 1954.

ERBench Question Types

• Binary Questions & Multiple-Choice Questions


Template	FD	Example Question
Binary (Y)	Director, star, released year -> movie title	Is there a movie, released in <1997>, starring <leonardo DiCaprio>, where <james cameron=""> is the director?</james></leonardo
Binary (N)	Director, star, released year -> movie title	Is it true that there are no movies, released in <1997>, starring <leonardo dicaprio="">, where <james cameron=""> is the director?</james></leonardo>
Multiple Choice	Movie title, released year -> director, country of origin, genre	Q: What is the false option about the movie <titanic> released in year <1997>? Option 1: It was directed by <james cameron="">. Option 2: It was produced in country <usa>. Option 3: It is <animation> movie.</animation></usa></james></titanic>

Metrics

	Metric	Model Answer	Model Rationale	
Conventional	Answer accuracy (A)	\checkmark	-	
Conventional	Hallucination rate ^[1] (<i>H</i>)	1- A - "I am not sure"		
	Rationale accuracy ^[*] (R)	-	\checkmark	
Newly Added	Answer-Rationale accuracy (AR)	\checkmark	\checkmark	

[1] Sun, Kai, et al. Head-to-tail: How knowledgeable are large language models (llm)? NAACL'24.[*] Contains keywords derived from FDs

Experiment Results

			Movie			Soccer	
Model	Metric	BN(Y)	$BN_{\left(N\right) }$	MC	BN(Y)	$BN_{\left(N\right) }$	MC
	Α	.58	.45	.96	.45	.18	.81
CDT 4	R	.76	.69	.95	.64	.46	.58
GPT-4	AR	.57	.44	.95	.38	.16	.57
	$\mathbf{H}(\downarrow)$.42	.53	.04	.38	.03	.06
	A	.02	1.0	.85	.01	1.0	.63
Llama2	R	.31	.82	.92	.07	.36	.41
Liamaz	AR	.02	.82	.81	.00	.36	.32
	H (↓)	.98	.00	.15	.99	.00	.37
	A	.29	1.0	.69	.50	.99	.40
Mistral	R	.28	.39	.71	.06	.13	.20
	AR	.13	.39	.59	.04	.13	.17
	H (↓)	.71	.00	.31	.50	.01	.60

(Table cropped for clarity; full results available in the paper)

• LLMs can show answer bias

• Answer accuracy is much better on BN(N), while showing similar rationale accuracy.

			Movie			Soccer	•
Model	Metric	BN(Y)	$BN_{\left(N\right) }$	MC	BN(Y)	BN(N)	MC
	Α	.58	.45	.96	.45	.18	.81
CDT 4	R	.76	.69	.95	.64	.46	.58
GPT-4	AR	.57	.44	.95	.38	.16	.57
	$\mathbf{H}\left(\downarrow\right)$.42	.53	.04	.38	.03	.06
	A	.02	1.0	.85	.01	1.0	.63
I Isona O	R	.31	.82	.92	.07	.36	.41
Llama2	AR	.02	.82	.81	.00	.36	.32
	H (↓)	.98	.00	.15	.99	.00	.37
Mistral	A	.29	1.0	.69	.50	.99	.40
	R	.28	.39	.71	.06	.13	.20
	AR	.13	.39	.59	.04	.13	.17
	H (↓)	.71	.00	.31	.50	.01	.60

(Table cropped for clarity; full results available in the paper)

LLMs can show answer bias

- Answer accuracy is much better on BN(N), while showing similar rationale accuracy.
- LLMs struggle to provide both the correct answer and rationale
 - **AR** is often lower than **A**

			Movie			Soccer	•
Model	Metric	BN(Y)	$BN_{\left(N\right) }$	MC	BN(Y)	BN(N)	MC
	A	.58	.45	.96	.45	.18	.81
GPT-4	R	.76	.69	.95	.64	.46	.58
GPI-4	AR	.57	.44	.95	.38	.16	.57
	$\mathbf{H}(\downarrow)$.42	.53	.04	.38	.03	.06
	A	.02	1.0	.85	.01	1.0	.63
Llama 2	R	.31	.82	.92	.07	.36	.41
Llama2	AR	.02	.82	.81	.00	.36	.32
	H (↓)	.98	.00	.15	.99	.00	.37
	A	.29	1.0	.69	.50	.99	.40
Mistral	R	.28	.39	.71	.06	.13	.20
Mistral	AR	.13	.39	.59	.04	.13	.17
	H (↓)	.71	.00	.31	.50	.01	.60

(Table cropped for clarity; full results available in the paper)

LLMs can show answer bias

- Answer accuracy is much better on BN(N), while showing similar rationale accuracy.
- LLMs struggle to provide both the correct answer and rationale
 - **AR** is often lower than **A**

Focusing solely on answers is insufficient; Considering rationale is important

Multi-hop Questions

- Correctness in later hops often highly depends on earlier hops
 - $\Pr(r_{i+1}|r_i)$: Previous hop is correct, and the following hop is also correct

		w/	Movie & Directorw/o CoTw/ CoT			w/	Soccer o CoT	& Olymp i w	іс / СоТ
Model	Metric	BN(Y)	BN(N)	BN(Y)	BN(N)	BN(Y)	BN(N)	BN(Y)	BN(N)
GPT-3.5	$\Pr(r_{i+1} r_i)$.95	.96	.93	.95	1.0 /.57	.95/.79	1.0/1.0	1.0 /.94
01 1-5.5	$\Pr(r_{i+1} eg r_i)$.04	.03	.06	.00	.10/.00	.15/.00	.33/.04	.31/.02
GPT-4	$\Pr(r_{i+1} r_i)$.96	.96	.97	.95	.99/.96	.99/.97	1.0 /.98	1.0 /.97
011-4	$\Pr(r_{i+1} \neg r_i)$	n/a	n/a	n/a	n/a	.35/.00	.27/.00	.52/.00	.55/.00
Llama2	$\Pr(r_{i+1} r_i)$.92	.93	.97	.92	1.0/.85	1.0 /.81	1.0 /.95	1.0 /.93
Liamaz	$\Pr(r_{i+1} eg r_i)$.00	.00	.00	.00	.35/.00	.18/.00	.24/.02	.20/.04

(Table cropped for clarity; full results available in the paper)

Multi-hop Questions

- Correctness in later hops often highly depends on earlier hops
 - $\circ \operatorname{Pr}(r_{i+1}|r_i)$: Previous hop is correct and the following hop is also correct

		w/e	Movie o CoT		& Director w/ CoT		Soccer w/o CoT		ic / CoT
Model	Metric	BN(Y)	BN(N)	BN(Y)	BN(N)	BN(Y)	BN(N)	BN(Y)	BN(N)
CPT 3 5	$\Pr(r_{i+1} r_i)$.95	.96	.93	.95	1.0 /.57	.95/.79	1.0/1.0	1.0 /.94
GPT-3.5	$\Pr(r_{i+1} eg r_i)$.04	.03	.06	.00	.10/.00	.15/.00	.33/.04	.31/.02
GPT-4	$\Pr(r_{i+1} r_i)$.96	.96	.97	.95	.99/.96	.99/.97	1.0 /.98	1.0 /.97
01 1-4	$\Pr(r_{i+1} eg r_i)$	n/a	n/a	n/a	n/a	.35/.00	.27/.00	.52/.00	.55/.00
Llama2	$\Pr(r_{i+1} r_i)$.92	.93	.97	.92	1.0 /.85	1.0 /.81	1.0 /.95	1.0 /.93
	$\Pr(r_{i+1} eg r_i)$.00	.00	.00	.00	.35/.00	.18/.00	.24/.02	.20/.04

(Table cropped for clarity; full results available in the paper)

ERBench enables new kind of analyses (e.g., step-by-step debugging)

Takeaways

- ERBench can be a powerful tool for evaluating LLM hallucinations
 - Key idea: use relational databases and design theory
- ERBench provides unique benefits compared to existing benchmarks
 - Automatic rationale verification using Functional Dependencies
 - Easy multi-hop question generation using Foreign Key Constraints
 - High usability by allowing everyone to convert their own databases

Thank you 😌 Please come to our **poster session** for more details!

Appendix

More details and Future Improvements

Additional Techniques

- Chain-of-Thought
 - Designed demonstration prompts to have balanced distribution w.r.t. the answer type (e.g. Yes/No)
- Fine-tuning
 - Finetuned GPT-3.5 with 3,000 Q&A pairs for each dataset

PROMPTS FOR MOVIE DATASET

Q: Is there a movie, released in 1975, starring Al Pacino where Sidney Lumet is the director? A: Yes, the movie, among various movies Al Pacino starred in 1975, Sideny Lumet directed the movie 'Dog Day Afternoon''.

Q: Is it true that there are no movies, released in 2005, starring Ben Affleck where Kevin Smith is the director?

A: Yes, it is true. However, there is a movie, "Chasing Amy" that Kevin Smith directed, where Ben Affleck starred in, which was released in 1997.

Q: Is it true that there are no movies, released in 2019, starring Kangho Song where Bong Joon-ho is the director?

A: No, it is not true. The movie "Parasite", which was released in 2019 was directed by Bong Joon-ho, where Kangho Song starred in the movie.

Q: Is there a movie, released in 1997, starring Jason Biggs where Paul Weitz is the director? **A:** No, however there is a movie, "American Pie" that Paul Weitz directed, where Jason Biggs starred in, which was released in 1999.

Q: Is there a movie, released in 1979, starring George Lazenby where Peter R. Hunt is the director? **A:** No, however there is movie, "On Her Majesty's Secret Service" that George Lazenby starred in, where Peter R. Hunt is the director, which was released in 1969.

Q: Is it true that there are no movies, released in 2005, starring Leonardo DiCaprio where Martin Scorsese is the director?

A: Yes, it is true. However, there is a movie, "Gangs of New York" that Martin Scorsese directed and Leonardo DiCaprio starred in, which was released in 2002.

Q: Is it true that there are no movies, released in 1952, starring Robert Taylor where Richard Thorpe is the director?

A: No, it is not true. The movie, "Ivanhoe" that Richard Thorpe directed, where Robert Taylor appeared in the movie was released in 1952.

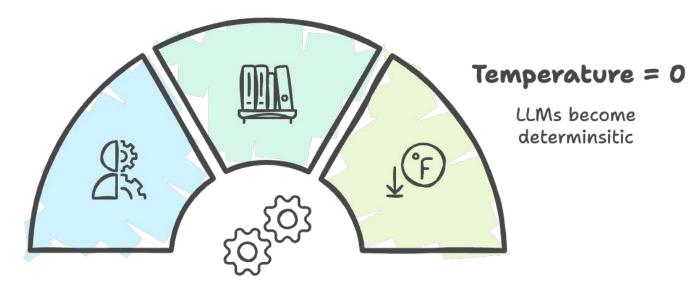
Q: Is there a movie, released in 1982, starring Dustin Hoffman where Sydney Pollack is the director? A: Yes, the movie, among various movies that Sydney Pollack directed in 1982, Dustin Hoffman starred in the movie, "Tootsie".

Metrics

- Answer Accuracy (A) [11]: Portion of LLM responses that are correct.
- Rationale Accuracy (R): Portion of responses whose rationales contain the FD-inferred values.
- Answer-Rationale Accuracy (AR): Portion of responses that are not only correct, but also contain FD-inferred values in their rationales.
- Hallucination Rate (**H**) [11]: Portion of responses that are incorrect, excluding those where LLMs admit uncertainty in their responses (e.g., *Unsure*). Specifically, $\mathbf{H} = 1 \mathbf{A} \mathbf{M}$, where **M** denotes the percentage of LLM responses that admit they cannot answer the given question (i.e., *missing rate*). A lower **H** value is better.

Experiment Results

New Findings


Experimental Setups

5 Datasets

Movie, Soccer, Airport, Music, Book

6 LLMs

GPT-3.5 / GPT-4 / LLama2-70B-Chat / Gemini-Pro / Claude-3-Sonnet / Mistral-7B-Instruct

			Movie			Soccer	•
Model	Metric	BN(Y)	$BN^{(N)}$	MC	BN(Y)	BN(N)	MC
	Α	.58	.45	.96	.45	.18	.81
CDT 4	R	.76	.69	.95	.64	.46	.58
GPT-4	AR	.57	.44	.95	.38	.16	.57
	$\mathbf{H}(\downarrow)$.42	.53	.04	.38	.03	.06
	A	.02	1.0	.85	.01	1.0	.63
Llama2	R	.31	.82	.92	.07	.36	.41
Liamaz	AR	.02	.82	.81	.00	.36	.32
	H (↓)	.98	.00	.15	.99	.00	.37
	A	.29	1.0	.69	.50	.99	.40
Mistual	R	.28	.39	.71	.06	.13	.20
Mistral	AR	.13	.39	.59	.04	.13	.17
	H (↓)	.71	.00	.31	.50	.01	.60

(zoomed in)

LLMs can show answer bias

While showing similar rationale accuracy, answer 0 accuracy is much better on BN(N)

Focusing solely on answers is insufficient

- Providing both the correct answer and rationale can be challenging
 - **AR** is often lower than **A** \bigcirc

Considering rationale is important

Multi-hop Questions

- Subsequent hops can be highly dependent on the previous hop
 - \circ e.g., $\Pr(r_{i+1}|r_i)$: Previous hop is correct and the following hop is also correct

			Movie	& Direc	tor	Soccer & Olympic			
		w/	о СоТ	W	/ CoT	w/	о СоТ	W	/ CoT
Model	Metric	BN(Y)	BN(N)	BN(Y)	BN(N)	BN(Y)	BN(N)	BN _(Y)	BN(N)
GPT-3.5	$\Pr(r_{i+1} r_i)$.95	.96	.93	.95	1.0 /.57	.95/.79	1.0/1.0	1.0 /.94
GP1-5.5	$\Pr(\overline{r_{i+1}} \neg r_i)$.04	.03	.06	.00	.10/.00	.15/.00	.33/.04	.31/.02
GPT-4	$\Pr(r_{i+1} r_i)$.96	.96	.97	.95	.99/.96	.99/.97	1.0 /.98	1.0 /.97
0114	$\Pr(r_{i+1} \neg r_i)$	n/a	n/a	n/a	n/a	.35/.00	.27/.00	.52/.00	.55/.00
Llama2	$\Pr(r_{i+1} r_i)$.92	.93	.97	.92	1.0 /.85	1.0 /.81	1.0 /.95	1.0 /.93
Liundz	$\Pr(r_{i+1} eg r_i)$.00	.00	.00	.00	.35/.00	.18/.00	.24/.02	.20/.04
	26 (1967) (21			/)			

(zoomed in)

ERBench enables new kind of analyses (e.g., step-by-step debugging)

			Movie			Soccer	•
Model	Metric	BN(Y)	$BN^{(N)}$	MC	BN(Y)	BN(N)	MC
	Α	.58	.45	.96	.45	.18	.81
CDT 4	R	.76	.69	.95	.64	.46	.58
GPT-4	AR	.57	.44	.95	.38	.16	.57
	$\mathbf{H}(\downarrow)$.42	.53	.04	.38	.03	.06
	A	.02	1.0	.85	.01	1.0	.63
Lloma 2	R	.31	.82	.92	.07	.36	.41
Llama2	AR	.02	.82	.81	.00	.36	.32
	H (↓)	.98	.00	.15	.99	.00	.37
	A	.29	1.0	.69	.50	.99	.40
Mistral	R	.28	.39	.71	.06	.13	.20
	AR	.13	.39	.59	.04	.13	.17
	H (↓)	.71	.00	.31	.50	.01	.60

(zoomed in)

LLMs can show answer bias

• Answer accuracy is much better on BN(N), while showing similar rationale accuracy.

Model	Metric	Movie			Soccer			
		BN(Y)	$BN_{\left(N\right) }$	MC	BN(Y)	BN(N)	MC	
GPT-4	Α	.58	.45	.96	.45	.18	.81	
	R	.76	.69	.95	.64	.46	.58	
	AR	.57	.44	.95	.38	.16	.57	
	$\mathbf{H}(\downarrow)$.42	.53	.04	.38	.03	.06	
Llama2	A	.02	1.0	.85	.01	1.0	.63	
	R	.31	.82	.92	.07	.36	.41	
	AR	.02	.82	.81	.00	.36	.32	
	H (↓)	.98	.00	.15	.99	.00	.37	
Mistral	A	.29	1.0	.69	.50	.99	.40	
	R	.28	.39	.71	.06	.13	.20	
	AR	.13	.39	.59	.04	.13	.17	
	H (↓)	.71	.00	.31	.50	.01	.60	

(zoomed in)

- LLMs struggle to provide both the correct answer and rationale
 - **AR** is often lower than **A**

		Movie			Soccer		
Model	Metric	BN(Y)	$BN^{(N)} \\$	MC	BN(Y)	BN(N)	MC
GPT-4	A	.58	.45	.96	.45	.18	.81
	R	.76	.69	.95	.64	.46	.58
	AR	.57	.44	.95	.38	.16	.57
	$\mathbf{H}(\downarrow)$.42	.53	.04	.38	.03	.06
Llama2	Α	.02	1.0	.85	.01	1.0	.63
	R	.31	.82	.92	.07	.36	.41
	AR	.02	.82	.81	.00	.36	.32
	H (↓)	.98	.00	.15	.99	.00	.37
Mistral	A	.29	1.0	.69	.50	.99	.40
	R	.28	.39	.71	.06	.13	.20
	AR	.13	.39	.59	.04	.13	.17
	H (↓)	.71	.00	.31	.50	.01	.60