

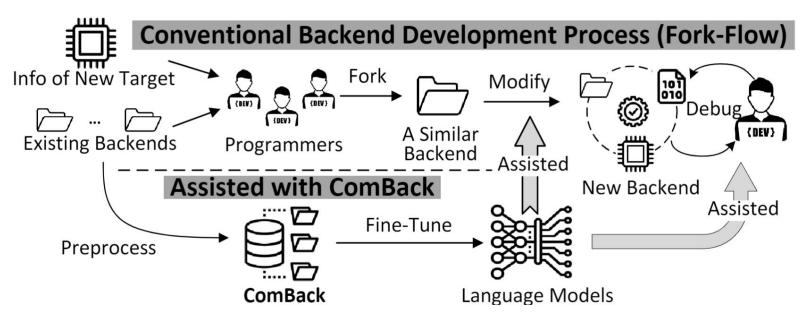
ComBack: A Versatile Dataset for Enhancing Compiler Backend Development Efficiency

Ming Zhong^{1, 2}, Fang Lyu¹, Lulin Wang¹, Hongna Geng^{1,2}, Lei Qiu^{1, 2}, Huimin Cui^{1,2} and Xiaobing Feng^{1,2}

¹SKLP, Institute of Computing Technology, CAS ²University of Chinese Academy of Sciences, Beijing, China Compiler: Source Code -> Machine Code.

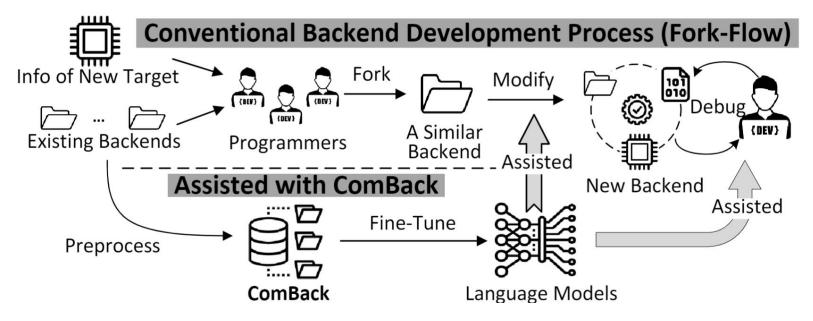
FrontEnd, MiddleEnd, BackEnd.

Backend: Generating machine code for various processors.


Challenges in Backend Development: Slowness and Complexity.

Slowness: Necessitating understanding of hardware characteristics and compiler infrastructure.

> **Comlexity:** Magnitude of manual efforts for writing code.


Background

> Traditional Manual Approach: Fork-Flow

Background

> Traditional Manual Approach: Fork-Flow

Current Problem:

Limited accuracy in LLMs (e.g., ChatGPT) for backend code.

> Solution:

> A domain-specific dataset for compiler backend development.

ComBack: First Public Dataset for Backends

> Feature

- Large-Scale: 5,700,000+ Lines of Code, 181,000+ Functions.
- Multi-Targets: 77 for GCC, 101 for LLVM.

	(a)	GCC			(b) LLVM					
Туре	Target	Function	KLoC		Туре	Target	Function	KLoC		
CPU	30	35,147	647.2		CPU	43	84,914	3,450.4		
MPU	33	6,010	183.9]	MPU	30	11,311	173.0		
GPU	2	457	11.2		GPU	5	22,591	768.3		
VLIW	5	959	25.4	V	VLIW	4	2,048	24.3		
DSP	3	399	9.6		DSP	7	9,646	263.2		
Virtual	4	327	6.5	N	/irtual	12	8,430	168.3		
Sum	77	43,299	883.7		Sum	101	138,940	4,847.5		

- Versatility: 3 tasks for common scenarios.
- Availability: https://huggingface.co/datasets/docz-ict/ComBack

Inputs: ... adjustReg(DL, SPReg, FPReg, –StackSize+RVFI–>getVarArgsSaveSize() ____ **Ground Truth:** MachineInstr::FrameDestroy);

(a) Statement-Level Completion

Inputs: ... maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask; **Ground Truth:** MFI -> setMaxCallFrameSize(maxCallFrameSize);

(b) Next-Statement Suggestion

Inputs:

getPointerRegClass: Returns a TargetRegisterClass used for pointer values.

Target–Specific Value: Sparc, SP::I64RegsRegClass, SP::IntRegsRegClass.

Ground Truth:

TargetRegisterClass *SparcRegisterInfo::getPointerRegClass(MachineFunction &MF, unsigned Kind) { return Subtarget.is64Bit() ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;

(c) Code Generation

≻ Setup:

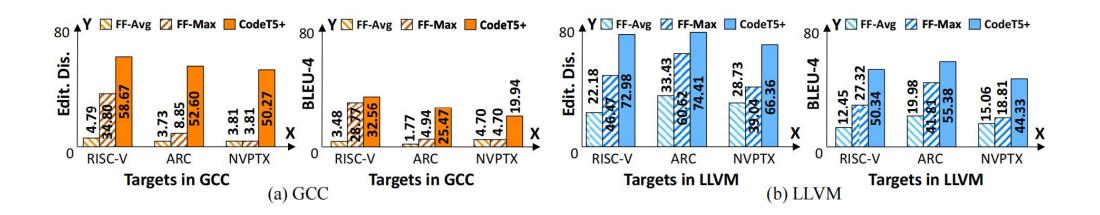
➢ 6 language models (max 220M parameters) for fine-tuning.

> 2 LLMs (ChatGPT-3.5-turbo and CodeLLaMA-34B) for inferencing.

RQ.1 Improvements of backend code accuracy through fine-tuning.

Train/Validation/Test set: 80%:10%:10%.

	Stmt. Comp.		Next. Sugg.		Code. Gen.		Stmt. C	Stmt. Comp.		Next. Sugg.		Gen.		
Model	EM (%)	ED	EM (%)	ED	BLEU-4	ED	EM (%)	ED	EM (%)	ED	BLEU-4	ED		
		W	ithout Fi	ne-Tun	ing		Fine-Tuned							
CodeBert	0.00	0.97	0.00	1.31	0.00	0.44	53.84	77.44	52.67	70.82	23.54	54.63		
GraphCodeBert	0.00	0.35	0.00	0.54	0.00	2.41	43.00	71.89	47.10	61.31	20.73	48.83		
UniXcoder	0.07	27.56	15.93	29.11	0.00	31.81	67.84	85.06	58.51	75.31	56.24	73.45		
CodeT5	0.65	21.45	7.23	23.50	0.00	13.57	66.47	84.34	58.52	76.03	70.87	80.45		
NatGen	0.00	13.52	0.02	15.95	0.01	28.76	67.47	84.83	60.30	76.84	71.73	81.39		
CodeT5+	0.02	7.24	0.12	9.87	0.00	12.33	66.93	84.45	59.57	76.41	75.29	82.92		


RQ.2 Backend code accuracy for new targets of existing types.

- **Testset**: (RISC-V (CPU), ARC (MPU), NVPTX (GPU)).
- Train/Validation set: Remaining data (90%:10%).
- CodeT5+ (220M) for fine-tuning, ChatGPT and Code-LLaMA for Inferencing.

Stmt. Comp.							Next. Sugg.						Code. Gen.					
Model	RISC	C-V	AR	С	NVP	ГХ	RISC	C-V	AR	С	NVP	TX	RISC	-V	ARC	2	NVP	ГХ
	EM (%)	ED	EM (%)	ED	EM (%)	ED	EM (%)	ED	EM (%)	ED	EM (%)	ED	BLEU-4	ED	BLEU-4	ED	BLEU-4	ED
GCC																		
ChatGPT	10.34	38.41	15.35	42.94	12.01	41.47	6.44	12.90	9.75	20.79	7.97	17.79	1.37	24.12	1.67	28.26	1.57	26.97
Code-LLaMA	0.41	19.07	0.85	16.77	0.56	18.22	1.58	13.54	2.66	17.95	2.47	16.59	1.67	27.89	1.71	30.49	1.57	27.65
CodeT5+	51.16	75.32	52.45	74.57	50.56	75.52	49.11	67.84	38.26	59.21	38.33	56.31	32.56	58.67	19.94	50.27	25.47	52.60
								LI	<u>.VM</u>									
ChatGPT	12.08	41.39	16.77	42.02	14.73	43.72	9.80	21.86	10.81	20.66	11.39	22.82	1.23	25.12	1.30	27.19	1.43	25.45
Code-LLaMA	0.45	17.61	0.61	17.21	0.99	17.23	1.75	15.04	0.42	11.27	2.42	16.25	1.43	27.24	1.61	32.12	1.59	28.08
CodeT5+	62.68	82.02	71.34	85.98	64.45	81.53	48.71	68.95	58.68	74.57	47.81	65.51	50.34	72.98	55.38	74.41	44.33	66.36

RQ.2 Code accuracy for new targets of existing types.

- > Comparing with traditional method (Fork-Flow).
- Simulating Fork-Flow: Calculate the evaluation metrics between test set functions and train/valid set functions.

> RQ.2 Code accuracy for new targets of new types.

Testset: (ARC (MPU), NVPTX (GPU)).

Train/Validation set: CPU data (90%:10%).

➢ Fine-Tuning CodeT5+ (220M) from scratch.

		Comp.		Next.	Sugg.		Code. Gen.					
Dataset	ARC (N	APU)	NVPTX	(GPU)	ARC (N	MPU)	NVPTX	(GPU)	ARC (N	(IPU)	NVPTX ((GPU)
	EM (%)	ED	EM (%)	ED	EM (%)	ED	EM (%)	ED	BLEU-4	ED	BLEU-4	ED
	GCC											
-w/o GPU and MPU	50.53	74.09	46.37	72.45	37.22	58.21	38.33	56.83	19.29	49.12	22.46	50.33
-w GPU and MPU	52.45	74.57	50.56	75.52	38.26	59.21	38.33	56.31	19.94	50.27	25.47	52.60
Diff	-1.92	-0.48	-4.19	-3.07	-1.04	-1.00	0.00	+0.52	-0.65	-1.15	-3.01	-3.37
					LLVM	1						
-w/o GPU and MPU	69.82	85.59	60.04	79.85	58.26	73.75	46.28	63.92	49.62	70.26	42.94	65.43
-w GPU and MPU	71.34	85.98	64.45	81.53	58.68	74.57	47.81	65.5	55.38	74.41	44.33	66.36
Diff	-1.52	-0.39	-4.41	-1.68	-0.42	-0.82	-1.53	-1.58	-5.76	-4.15	-1.39	-0.93

> RQ.3 Iterative Expansion Ability.

Testset: (RI5CY (Customized RISC-V Processor)).

> Train/Validation set:

> Set 1: CPU data (**without RISC-V**) (90%:10%).

> Set 2: CPU data (**with RISC-V**) (90%:10%).

≻ Fine-Tuning CodeT5+ (220M) from scratch.

Dataset	Stmt-Leve	l. Comp.	Next-Stm	t. Sugg.	Code. Gen.			
Dataset	EM (%)	ED	EM (%)	ED	BLEU-4	ED		
-w RISC-V	74.06	87.91	67.25	81.28	79.46	89.92		
-w/o RISC-V	66.16	83.79	57.29	74.73	54.41	75.41		
Diff	+7.90	+4.12	+9.96	+6.55	+25.05	+14.51		

Thanks!

zhongming21s@ict.ac.cn