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Everyone who is doing ML knows ...

... training AND evaluation data can be messy.

... hoise during evaluating leads to inconsistent performance estimates.

* Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says, Forbes, 2016



Everyone who is doing ML knows ...

... training AND evaluation data can be messy.

... hoise during evaluating leads to inconsistent performance estimates.

BUT, data cleaning ...

... can be very time-consuming and labor intensive.

... 1S the least enjoyable task for many practitioners®.

* Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says, Forbes, 2016



Goals of this project Y

1. Reliably detect data quality issues, such as off-topic images, near
duplicates, and label errors, in image datasets without introducing

significant biases.

2. Reduce the time needed for detecting and confirming data quality issues.

3. Investigate the influence of data quality issues on model training and

evaluation.



Our findings

o Self-supervised learned (SSL) representations can

be exploited to find data quality issues.

 Context-aware SSL representations can capture

the dataset context with minimal bias.

« Combination of SSL representations and distance-

based indicators effectively finds quality issues.
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Results |

* Evaluation on both
synthetic and natural
contamination showed a
significant improvement

compared to current

solutions.
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Synthetic evaluation results.
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Results |}

* Applied to multiple image
benchmarks, we identify
up to 16% of issues, and
confirm an improvement
In evaluation reliability

upon cleaning.
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Analysis of ImageNet-1k.

Ranking: 13, Idx: 33171
box turtle

Ranking: 9, Idx: 41790
studio couch

Ranking: 14, Idx: 17843
iPod

Ranking: 5, Idx: 18750
hih-Tzu

ey

P

Ranking: 10, Idx: 11963
quilt

Ranking: 15, ldx: 5522
apron




Results il

* For a typical dataset SelfClean can reduce the inspection effort by a

factor between 5 and 50.
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Analysis of the inspection effort saved.
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