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Deep learning has made significant breakthroughs in fields like 
computer vision, and natural language processing.

It has potential in non-Euclidean graph 
data, like knowledge graphs, social 
networks, and biological molecules.

Background



Graph Data:
Graph data consists of nodes and edges 
connecting them, which can model 
various real-world systems. 

Background

Formally, we can define a graph as 
𝐺 = 𝑉, 𝐸, 𝑋 , where 𝑉 denotes the 
set of nodes, 𝐸 ⊆  𝑉 ×  𝑉 represents 
the set of edges, 𝑋 ∈  𝑅|𝑉|×𝑑 is the 
node feature matrix.



Graph Representation Learning:

It extracts representations in a low-
dimensional, continuous vector space 
from raw graph data that machines can 
process effectively. 

These representations keep the node's 
neighbor and attribute information, 
allowing standard machine learning 
techniques to tackle graph tasks like 
node classification.

Background



GNNs as Graph Representation Learning Methods:

A message-passing mechanism creates new node representations, 
where each node gathers information from its neighbors and 
combines it to update its own embedding.

Graph Neural Networks (GNNs)
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Graph Convolutional Networks (GCN)

The standard GCN model, is formualated as:

where መ𝑑𝑣 denotes the degree of node 𝑣, 𝑊𝑙  is the trainable weight 
matrix in layer 𝑙, and 𝜎 is the activation function.

The output of the last layer 𝐿 is the representation of 𝑣 produced 
by the GCN.



GraphSAGE

GraphSAGE learns representations through a different approach:

where 𝑊1
𝑙 and 𝑊2

𝑙 are trainable weight matrices, and mean𝑢∈𝑁(𝑣)ℎ𝑢
𝑙−1 

computes the average embedding of the neighboring nodes of 𝑣.



Graph Attention Networks (GAT) 

GAT employ masked self-attention to assign weights to different 
neighboring nodes. For an edge (𝑣, 𝑢)  ∈  𝐸, the propagation rule of 
GAT is defined as:

where a𝑙 is a trainable weight vector and 𝑊𝑙  is a trainable weight 
matrix.



Node Classification 

Node Classification aims to predict the labels of the unlabeled nodes. 

Typically, for any node 𝑣, the node representation generated by the 
last GNN layer is passed through a prediction head 𝑔(·), to obtain 
the predicted label. 

The objective is to 
minimize the loss 
between the predicted 
label and true label.  



Homophilous and Heterophilous Graphs 

Homophilous graphs: connected nodes may belong to same classes.

Heterophilous graphs: connected nodes may belong to different classes.

Due to the homophily assumption (information from neighborhoods), 
GNNs cannot generalize well to heterophilous graphs. However, our 
study find that GNNs also work well on heterophilous graphs!



Key Hyperparameters for Training GNNs 

Normalization:
Layer Normalization (LN) or Batch Normalization (BN) can be used in 
every layer before the activation function.Taking GCN as an example:

The normalization techniques are essential!



Key Hyperparameters for Training GNNs 

Dropout:
Dropout is a technique widely used in CNNs to address overfitting. 
Typically, dropout is applied to the feature embeddings after the 
activation function

The dropout are essential!



Key Hyperparameters for Training GNNs 

Residual Connections:
Residual Connections significantly enhance CNNs performance by 
connecting layer inputs directly to outputs, thereby alleviating the 
vanishing gradient issue. 

Formally, linear residual connections can be integrated into GNNs as 
follows:



Key Hyperparameters for Training GNNs 

Network Depth:
GNNs face unique challenges with depth, such as over-smoothing, 
where node representations become indistinguishable with increased 
network depth.

In practice, most GNNs adopt a shallow architecture, typically 
consisting of 2 to 5 layers.

Our findings indicate that comparable performance can be achieved 
from 2 to 10 layers.



Node Classification Datasets



Empirical Findings：Homophilous Graphs



Empirical Findings：Homophilous Graphs

• Our implementation of 

classic GNNs can place 

within the top two for 

five datasets.

• On CS and WikiCS, classic 

GNNs experience about a 

3% accuracy increase, 

achieving top-three 

performances. 

Observations on Homophilous 
Graphs. Classic GNNs, with only 

slight adjustments to 
hyperparameters, are highly 

competitive in node classification 
tasks on homophilous graphs, often 

outperforming state-of-the-art 
graph transformers in many cases.



Empirical Findings：Heterophilous Graphs



Empirical Findings：Heterophilous Graphs

• The three classic GNNs 

consistently secure top positions 

on five out of six heterophilous 

graphs.

• On Roman-Empire, a 17% 

increase is observed in the 

performance of GCN*

Observations on Heterophilous Graphs. 
Our implementation has significantly 

enhanced the previously reported best 
results of classic GNNs on heterophilous 

graphs, surpassing specialized GNN models 
tailored for such graphs and even 
outperforming the leading graph 
transformer architectures. This 

advancement challenging the prevailing 
assumption that GNNs are primarily suited 

for homophilous graph structures.



Empirical Findings：Large-scale Graphs



Empirical Findings：Large Graphs

• The three classic GNNs 

consistently secure top positions 

all four large-scale datasets. 

• On pokec, all three classic GNNs 

achieve over 10% performance 

increases by our implementation.

Observations on Large Graphs. 
Our implementation has significantly 

enhanced the previously reported results 
of classic GNNs, with some cases showing 
double-digit increases in accuracy. It has 
achieved the best results across these 

large graph datasets, either homophilous 
or heterophilous, and has outperformed 
state-of-the-art graph transformers. 



Ablation Studies - Normalization

• Normalization (either BN or LN) is important for 

node classification on large-scale graphs but less 

significant on smaller-scale graphs.

• The ablation of normalization does not lead to 

substantial deviations on small graphs (typically 

smaller than 1% difference).

• The ablation results in significant accuracy 

reductions on large graphs (e.g., 4.69% and 4.79% 

for GAT* and GraphSAGE* respectively on ogbn-

proteins).



Ablation Studies - Dropout

• Dropout is consistently found to be essential 

for node classification.

• The ablation of dropout leads to substantial 

performance decreases in both homophilous 

and heterophilous graphs (e.g., 4.28% 

decrease for GraphSAGE* on Amazon-Ratings 

and a 6.57% decrease on Roman-Empire).

• This trend persists in large-scale datasets, 

where the ablation of dropout leads to 1-3% 

performance difference for the three classic 

GNNs.  



Ablation Studies – Residual connections 

• Residual connections exhibit more pronounced 

effect on large-scale graphs and 

heterophilous graphs than on homophilous

graphs.

• The ablation of residual connections leads 

to substantial performance decreases for 

GCN* and GAT* on large-scale graphs 

such as ogbn-proteins and pokec.

• The effect is even more dramatic on 

heterophilous graphs, with the classic 

GNNs exhibiting the most significant 

accuracy reduction on Roman-Empire, for 

instance, a 24.43% for GCN* and 25.48% 

for GAT*.



Ablation Studies – Number of layers 

• Deeper networks generally lead to greater 

performance gains on heterophilous graphs 

compared to homophilous graphs.

• The performance trends for GCN* and 

GraphSAGE* are consistent across different 

graph types. 

• On homophilous graphs and ogbn-arxiv, both 

models achieve optimal performance with a 

range of 2 to 6 layers. 

• In contrast, on heterophilous graphs, their 

performance improves with an increasing 

number of layers, indicating that deeper 

networks are beneficial for these graphs. 



Conclusions

https://github.com/LUOyk1999/tunedGNN

⚫ With proper hyperparameter tuning, classic GNNs can 
achieve highly competitive performance in node 
classification across homophilous and heterophilous graphs 
with up to millions of nodes.

⚫ Notably, classic GNNs outperform state-of-the-art GTs, 
achieving the top rank on 17 out of 18 datasets.
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Thanks for listening!
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