

FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space

Yiyang Guo^{*1, 5†}, Ruizhe Li^{*2}, Mude Hui³, Hanzhong Guo⁴, Chen Zhang¹ Chuangjian Cai⁵, Le Wan⁵, Shangfei Wang^{‡1}

¹University of Science and Technology of China ²Fudan University ³University of California, Santa Cruz ⁴The University of Hong Kong ⁵IEG, Tencent

Image Watermarking

- Deepfakes
- Copyright Infringement

Decoding

Encoding

Misuse & Attack

Is this image copyrighted by Bob ?

√ / X

This image is copyrighted by Bob

Motivation

• Embedding watermarks in the latent frequency space of images.

Contributions

- FreqMark encodes hidden messages within the **latent frequency space** of images and achieves watermark embedding through indirect optimization centered on the image itself **without requiring network training**.
- FreqMark is **highly flexible**, allowing for a free trade-off between the bits number of the encoded message, image quality and watermark robustness to meet diverse requirements.
- FreqMark demonstrates **significant robustness advantages**, particularly during regeneration attacks compared to baseline methods.

Flexibility & Robustness

Method

Encoding

 $I_w = D(FFT^{-1}(FFT(E(I)) + \delta_m))$

• Decoding $m_d^k = sign(z_{I_w} \cdot v_k) = sign(E_{img}(I_w) \cdot v_k), v_k \in V_K^N$ $V_K^N = \{v_1, v_2, \dots, v_K \mid K \leq N\}$ Pre-defined Vectors

Training

- Image Quality $\mathcal{L}_p = -PSNR(I_w, I)$ $\mathcal{L}_i = LPIPS(I_w, I)$
- Watermark Message

$$\mathcal{L}_{m}(I_{w}) = \frac{1}{K} \sum_{k=1}^{K} \max(0, (\mu - (z_{I_{w}} \cdot v_{k}) \cdot m_{k})), v_{k} \in V_{K}^{N}, m_{k} \in \{-1, 1\}$$

• Robustness Enhancement

$$I_{p1} = D(FFT^{-1}(F_Z + \delta_m) + \epsilon 1)$$

$$I_{p2} = D(FFT^{-1}(F_Z + \delta_m)) + \epsilon 2$$

 $\mathcal{L} = \mathcal{L}_m(I_w) + \mathcal{L}_m(I_{p1}) + \mathcal{L}_m(I_{p2}) + \lambda_p \mathcal{L}_p(I_w, I) + \lambda_i \mathcal{L}_i(I_w, I)$

Benchmark

Method	PSNR	SSIM	Bit Accuracy										
			None	Brightness	Contrast	JPEG	Gau. blur	Gau. noise	VAE-B	VAE-C	Diffusion	Avg	
ImageNet													
DwtDctSvd[14]	39.67	0.978	0.993	0.636	0.489	0.848	0.992	0.993	0.550	0.562	0.592	0.739	
\pm std	1.939	0.011	0.049	0.307	0.222	0.147	0.058	0.051	0.063	0.078	0.106	N/A	
SSL Watermark[20]	31.04	0.862	1.000	1.000	1.000	0.972	1.000	0.937	0.793	0.777	0.743	0.914	
\pm std	0.110	0.029	0.000	0.000	0.000	0.034	0.000	0.028	0.073	0.096	0.077	N/A	
Stable Signature[19]	28.74	0.838	0.978	0.971	0.937	0.832	0.859	0.892	0.630	0.645	0.534	0.809	
\pm std	3.246	0.080	0.054	0.061	0.092	0.106	0.121	0.117	0.086	0.105	0.064	N/A	
FreqMark(Ours)	31.27	0.857	1.000	0.995	1.000	0.991	1.000	0.939	0.938	0.924	0.969	0.973	
\pm std	3.359	0.038	0.000	0.028	0.000	0.024	0.000	0.088	0.083	0.081	0.052	N/A	
DiffusionDB													
DwtDctSvd[14]	39.49	0.978	1.000	0.607	0.457	0.887	1.000	1.000	0.563	0.556	0.569	0.738	
\pm std	1.182	0.006	0.000	0.308	0.194	0.109	0.000	0.000	0.053	0.059	0.085	N/A	
SSL Watermark[20]	31.01	0.827	1.000	1.000	1.000	0.956	1.000	0.954	0.742	0.744	0.729	0.903	
\pm std	0.064	0.027	0.000	0.000	0.000	0.048	0.000	0.037	0.109	0.102	0.081	N/A	
Stable Signature[19]	28.31	0.844	0.996	0.996	0.990	0.896	0.858	0.967	0.668	0.733	0.527	0.848	
\pm std	1.608	0.033	0.013	0.012	0.014	0.042	0.086	0.028	0.063	0.049	0.040	N/A	
FreqMark(Ours)	31.20	0.854	1.000	1.000	1.000	1.000	1.000	0.934	0.925	0.897	0.945	0.967	
±std	1.538	0.029	0.000	0.000	0.000	0.000	0.000	0.061	0.066	0.059	0.047	N/A	

Results

Origin

Watermarked

Difference(×10)

Why the Image Latent Frequency Space?

Location	PSNR	SSIM	Bit Accuracy									
			None	Brightness	Contrast	JPEG	Gau. blur	Gau. noise	VAE-B	VAE-C	Diffusion	Avg
Pixel	31.36	0.771	0.950	0.935	0.937	0.848	0.885	0.925	0.642	0.654	0.542	0.813
Pixel Frequency	31.31	0.809	1.000	1.000	1.000	0.950	0.937	1.000	0.797	0.775	0.596	0.895
Latent	31.35	0.886	0.994	0.993	0.981	0.906	0.979	0.804	0.796	0.833	0.675	0.885
Latent Frequency	31.20	0.854	1.000	1.000	1.000	1.000	1.000	0.934	0.925	0.897	0.945	0.967

FreqMark: Invisible Image Watermarking via Frequency Based Optimization in Latent Space

Thanks!

For more information, please refer to our full paper published in NeurIPS 2024!