Learning Versatile Skills with Curriculum Masking

Yao Tang¹*, Zhihui Xie¹*, Zichuan Lin², Deheng Ye², Shuai Li¹ ¹Shanghai Jiao Tong University ²Tencent AI Lab

yaotang923@gmail.com

Unsupervised RL Pretraining

[1] Liu et al., 2022, Masked Autoencoding for Scalable and Generalizable Decision Making

[2] Sun et al. , 2023, SMART: Self-supervised Multi-task pretrAining with contRol Transformers

Masked Prediction on Decision-making Data

- A mask scheme = A reusable skill (s₁,[MASK],s₂,a₂,[MASK], a₃)
- Random masking^[1]?

"Heavy Information redundancy^[1]"

"Interleaved modality"

Our research question:

How to design & arrange mask schemes for decision-making data?

 a_3

[1] Liu et al., 2022, Masked Autoencoding for Scalable and Generalizable Decision Making

Curriculum Masking

- Main intuition: humans organize knowledge in a curriculum, from easy to hard
- Block-wise masking: a semantic entity of skill

- Small block size & mask ratio: local dynamics
- Large block size & mask ratio: global dependency

Curriculum Learning

- Core of Curriculum Masking: dynamically adjust mask schemes based on the learning progress
- Evaluate learning progress: target loss decrease^[1]

$$r = f_{\text{scale}}(\mathcal{L}_{ ext{target}}(heta) - \mathcal{L}_{ ext{target}}(heta'))$$

• Select masking schemes based on learning progress: multi-armed bandit algorithm EXP3^[2]

$$\pi_{\mathbf{w}}(i) = (1-\epsilon)\frac{w_i}{\sum_{j=1}^K w_j} + \frac{\epsilon}{K} \quad i = 1, \dots, K$$

[1] Graves et al., 2017, Automated curriculum learning for neural networks[2] Auer et al., 2002, The nonstochastic multiarmed bandit problem

Downstream Performance

• Skill Prompting

Reward ↑	walker_s	walker_w	walker_r	quad_w	quad_r	jaco_bl	jaco_br	jaco_tl	jaco_tr	Average
MaskDP	103.2 ± 2.6	58.4 ± 2.3	29.3 ± 1.4	36.6 ± 2.2	45.1 ± 2.4	58.1 ± 4.4	58.4 ± 3.0	56.9 ± 3.9	64.0 ± 3.3	56.7
MTM	107.1 ± 2.8	58.8 ± 2.7	27.3 ± 1.4	37.1 ± 2.3	$42.8 \pm \textbf{2.7}$	72.0 ± 4.5	71.8 ± 3.9	72.5 ± 5.1	77.6 ± 3.5	63.0
Mixed-inv	103.3 ± 3.1	$\underline{59.5} \pm 3.0$	23.8 ± 1.2	45.1 ± 3.0	43.2 ± 2.9	51.8 ± 3.3	53.0 ± 2.8	56.8 ± 3.6	$59.7 \pm \textbf{4.8}$	55.1
Mixed-prog	103.5 ± 2.4	$\overline{55.0} \pm 2.8$	25.8 ± 1.2	40.5 ± 1.8	45.6 ± 2.2	85.3 ± 5.5	$\underline{85.4} \pm 3.7$	$\underline{84.2} \pm 4.8$	88.5 ± 3.7	68.2
Mixed	110.8 ± 2.2	54.2 ± 2.0	30.5 ± 1.2	43.3 ± 2.7	$\textbf{51.3} \pm 2.8$	66.0 ± 6.4	61.6 ± 3.7	$\overline{62.3}\pm3.6$	66.5 ± 4.0	60.7
GPT	101.8 ± 2.9	34.6 ± 1.3	21.6 ± 1.0	419 + 29	48.8 ± 3.2	86.1 ± 5.7	83.1 ± 2.7	839 ± 51	85.7 ± 3.0	65 3
CurrMask	111.2 ± 2.4	$\textbf{79.9} \pm 1.2$	$\textbf{38.9} \pm 1.9$	38.0 ± 2.2	$\underline{51.0} \pm 3.4$	88.4 \pm 5.1	$\textbf{88.5} \pm 3.6$	$\pmb{86.0} \pm 4.3$	$\textbf{92.9} \pm 3.5$	75.0

• Goal-conditioned Planning

Distance \downarrow	walker_s	walker_w	walker_r	quad_w	quad_r	Jaco_bl	jaco_br	jaco_tl	jaco_tr	Average
MaskDP	$\underline{4.85} \pm 0.48$	10.10 ± 0.27	15.52 ± 0.39	20.71 ± 0.69	21.62 ± 0.79	1.42 ± 0.05	1.42 ± 0.05	$\underline{1.39} \pm 0.06$	1.40 ± 0.06	<u>8.71</u>
MTM	6.05 ± 0.61	12.20 ± 0.41	17.92 ± 0.55	23.93 ± 0.70	25.09 ± 0.80	2.38 ± 0.08	2.42 ± 0.10	2.35 ± 0.07	2.30 ± 0.10	10.59
Mixed-inv	5.32 ± 0.53	11.25 ± 0.31	16.51 ± 0.51	22.63 ± 0.74	23.31 ± 0.77	1.55 ± 0.06	1.53 ± 0.05	1.57 ± 0.07	1.53 ± 0.08	9.47
Mixed-prog	4.96 ± 0.48	10.18 ± 0.28	15.77 ± 0.48	23.49 ± 0.72	24.28 ± 0.86	1.46 ± 0.04	1.44 ± 0.04	1.44 ± 0.05	1.44 ± 0.09	9.38
Mixed	$\textbf{4.83} \pm 0.47$	10.15 ± 0.28	$\underline{15.47} \pm 0.46$	20.67 ± 0.73	21.66 ± 0.75	1.47 ± 0.06	1.47 ± 0.04	1.43 ± 0.06	1.44 ± 0.08	8.73
Goal-GPT	7.47 ± 0.74	15.15 ± 0.41	21.04 ± 0.60	27.36 ± 0.77	28.76 ± 0.90	3.34 ± 0.10	358 ± 0.11	3.26 ± 0.15	350 ± 0.11	12 61
CurrMask	$\underline{4.85} \pm 0.47$	9.90 ± 0.27	15.31 ± 0.49	$\textbf{20.47} \pm 0.71$	21.39 ± 0.67	1.39 ± 0.05	1.38 ± 0.04	1.33 ± 0.05	1.34 ± 0.07	8.60

CurrMask consistently outperforms other baselines on various downstream tasks

Analysis

Impact of Block-wise Masking

Impact of Masking Curricula

Skill Prompting reward v.s. rollout length

Summary

- Curriculum Masking for unsupervised RL pretraining
 - A unified model to learn **versatile** skills
 - Adaptivity in adjusting learning strategy
 - Superior ability to extract local dynamics & global dependencies
- Limitations
 - A training time (wall clock time) overhead of 4.7%
 - Advantages could be affected by the underlying structure of the environment