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We will let                        
for simplicity.

2

Sparse Linear Regression

◆We consider the problem of identifying the top-k important parameters in a linear regression 
model using the least squares method.

◆ This is a crucial problem that crosses feature selection, sparse coding, and compressed sensing.

Introduction

𝒚: continuous responses
𝑿: input matrix
𝜽: parameter vector
$ !: # of nonzero elements

Algorithm 1 Iterative Hard Thresholding
1: Input: sparsity level k, step size ⌘
2: Initialization: ✓1

 0, t 1
3: repeat
4: zt

 ✓t
� ⌘rf(✓t); . Performing gradient descent method

5: ✓t+1
 Pk(zt); t t+ 1; . Selecting the k-largest elements in magnitude of zt

6: until a stopping criterion is met

candidate set, our method prunes indices that are clearly not included in the candidate set. To identify36

such indices, we compute upper bounds of absolute values for the elements of the parameter vector.37

If the upper bound is smaller than a threshold, the index is not included in the candidate set. The38

threshold is automatically determined by leveraging lower bounds of absolute values for the elements39

of the parameter vector. Since the computation cost of the upper and lower bounds is O(n) time, we40

can efficiently construct the candidate set. By updating only the parameters corresponding to the41

candidate set, we can prune unnecessary gradient computations. Our method guarantees the same42

optimization results as the plain IHT because its pruning is safe. In addition, our method does not43

need additional hyperparameter tuning. Experiments show that our method is up to 73 times faster44

than the plain IHT while maintaining accuracy.45

2 Preliminary46

Notation. We denote scalars, vectors, and matrices with lower-case, bold lower-case, and upper-case47

letters, e.g., x, x and X , respectively. Given a matrix X , we denote its i-th row by Xi. Given a48

vector x 2 Rm, we denote its i-th element by xi, and we call i index. || · ||2 is the `2 norm. ||x||049

is |{i 2 {1, ...,m}|xi 6= 0}| and represents the number of nonzero elements in x. 0 2 Rm is the50

m-dimension vector whose elements are zeros. supp(x) is the function that returns the indices of51

nonzero elements in x.52

2.1 Problem Setting53

Let X 2 Rm⇥n be an input matrix (design matrix), y 2 Rm be a set of continuous responses, and54

✓ 2 Rn be a parameter vector of a linear regression model. To find a sparse parameter vector of the55

model, we consider the following optimization problem [5]:56

min
✓2Rn

1
2 ||y �X✓||

2
2 subject to ||✓||0  k. (1)

In the above problem, the number of nonzero elements in the parameter vector, ||✓||0, is constrained57

by k 2 {1, ..., n}. Here, we will let f(✓) = 1
2 ||y �X✓||

2
2 for simplicity.58

2.2 Iterative Hard Thresholding59

IHT is the practical algorithm for Problem 1 [5, 2]. It repeatedly performs the following iteration:60

zt = ✓t
� ⌘rf(✓t) = ✓t

� ⌘X>(X✓t
� y) = (I � ⌘X>X)✓t + ⌘X>y, (2)

✓t+1 = Pk(z
t), (3)

where ⌘ > 0 is the step size, ✓t is the parameter vector at the t-th iteration. Pk(zt) is the hard61

thresholding operator that selects the k-largest elements in the magnitude of zt and sets the other62

elements to zero. The selection requires O(n log k) time if it uses heapsort. The pseudocode is63

described in Algorithm 1. See [5, 13, 6, 8, 4, 16, 19, 2] for theoretical discussions of IHT.64

From Equation (2) and Algorithm 1, computing gradients rf(✓t) clearly dominates the other cost.65

In Equation (2), we use the second equation or the third one to compute zt. They require O(mn)66

and O(n2) times in every iteration, respectively1. Therefore, IHT incurs high computation cost when67

X 2 Rm⇥n is large.68

1If X>X and X>y are precomputed, the cost is O(n2) time. See the Appendix for a discussion of IHT
with sparse matrices.
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◆ Iterative Hard Thresholding (IHT) is a practical method to tackle this problem.

This paper proposes fast IHT that safely prunes unnecessary gradient computations. Before computing
the gradients for each iteration, the proposed method efficiently constructs a candidate set whose
elements correspond to indices of the k-largest elements in terms of magnitude of the parameter
vector. When constructing the candidate set, our method prunes indices that are clearly not included
in the candidate set. To identify such indices, we compute upper bounds of absolute values for
the elements of the parameter vector. If the upper bound is smaller than a threshold, the index is
not included in the candidate set. The threshold is automatically determined by leveraging lower
bounds of absolute values for the elements of the parameter vector. Since the computation cost
of the upper and lower bounds is O(n) time, we can efficiently construct the candidate set. By
updating only the parameters corresponding to the candidate set, we can prune unnecessary gradient
computations. Our method guarantees the same optimization results as the plain IHT because it safely
prunes unnecessary computations. In addition, our method does not need additional hyperparameter
tuning. Experiments demonstrate that our method is up to 73 times faster than the plain IHT while
maintaining accuracy on feature selection tasks.

2 Related Work

In [4, 30], the authors utilized a double-overrelaxation approach to improve the convergence speed of
IHT. They use two relaxation steps for the parameter vector, which are similar to the momentum of
Nesterov’s method [28]. In [8, 24], the authors introduced the momentum to IHT inspired by the fast
iterative shrinkage thresholding algorithm (FISTA) [3]. While FISTA uses the momentum with a soft
thresholding operator, Cevher [8] uses it with the hard thresholding operator. This Accelerated IHT
(AccIHT) has substantial theoretical and empirical improvement over the plain IHT [23].

While the previous methods have reduced the number of iterations to accelerate IHT as described
above, to the best of our knowledge, there are no papers on reducing the computation cost per iteration
of IHT. This paper aims to fill this gap based on the pruning strategy. For convex and some nonconvex
regularization, working set algorithms are used to reduce the cost of solvers [7, 21, 26, 31]. They
solve a growing sequence of subproblems that are restricted to a small subset of parameters during
optimization. In [12, 13, 22, 15, 16, 18, 17], the authors reduced the cost by skipping unnecessary
parameter updates for coordinate descent with sparsity-inducing norms. However, since these methods
are tailored for coordinate descent or the soft thresholding operator, they cannot be used for IHT,
which selects k elements from the parameter vector by using the hard thresholding operator.

3 Preliminary

Notation. We denote scalars, vectors, and matrices with lower-case, bold lower-case, and bold
upper-case letters, e.g., x, x and X , respectively. Given a matrix X , we denote its i-th row by Xi.
Given a vector x 2 Rm, we denote its i-th element by xi, and we call i index. || · ||2 is the `2 norm.
||x||0 is |{i 2 {1, ...,m}|xi 6= 0}| and represents the number of nonzero elements in x. 0 2 Rm is
the m-dimensional vector whose elements are zeros. I represents the identity matrix. supp(x) is the
function that returns the indices of nonzero elements in x.

3.1 Problem Setting

Let X 2 Rm⇥n be an input matrix (design matrix), y 2 Rm be a set of continuous responses, and
✓ 2 Rn be a parameter vector of a linear regression model. To find a sparse parameter vector of the
model, we consider the following optimization problem [5]:

min
✓2Rn

1
2 ||y � X✓||

2
2 subject to ||✓||0  k. (1)

In the above problem, the number of nonzero elements in the parameter vector, ||✓||0, is constrained
by k 2 {1, ..., n}. Here, we will let f(✓) = 1

2 ||y � X✓||
2
2 for simplicity.

3.2 Iterative Hard Thresholding

IHT is the practical algorithm for Problem (1) [5, 2]. It repeatedly performs the following iteration:
zt = ✓t

� ⌘rf(✓t) = ✓t
� ⌘X>(X✓t

� y) = (I � ⌘X>X)✓t + ⌘X>y, (2)
✓t+1 = Hk(z

t), (3)

2
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Iterative Hard Thresholding (IHT)

◆ IHT repeats the following steps util convergence:
Step 1: Update all parameters using gradient descent.
Step 2: Select the top-k parameters with the largest absolute values,

and set the remaining parameters to zero (hard thresholding operator).

Introduction

Algorithm 1 Iterative Hard Thresholding
1: Input: sparsity level k, step size ⌘

2: Initialization: ✓1
 0, t 1

3: repeat
4: zt

 ✓t
� ⌘rf(✓t); . Performing gradient descent method

5: ✓t+1
 Hk(zt); t t+ 1; . Selecting the k-largest elements in magnitude of zt

6: until a stopping criterion is met

where ⌘ > 0 is the step size, ✓t is the parameter vector at the t-th iteration. Hk(zt) is the hard
thresholding operator that selects the k-largest elements in the magnitude of zt and sets the other
elements to zero. The selection requires O(n log k) time if it uses a heap. The pseudocode is
described in Algorithm 1. See [5, 14, 6, 8, 4, 20, 23, 2] for theoretical discussions of IHT.

From Equation (2) and Algorithm 1, computing gradients rf(✓t) clearly dominates the other cost.
In Equation (2), we use the second equation or the third one to compute zt. They require O(mn)
and O(n2) times in every iteration, respectively2. Therefore, IHT incurs high computation cost when
X 2 Rm⇥n is large.

4 Proposed Algorithm

This section describes our algorithm that reduces the computation cost per iteration in IHT.

4.1 Main Idea

The bottleneck of IHT is the gradient computation to obtain zt of Equation (2): it requires O(mn)
or O(n2) time per iteration. Therefore, we reduce the cost by pruning unnecessary elements in zt

before computing the gradients. For the pruning, we introduce a candidate set D
t such that |D

t
| = k

for the t-th iteration. This set maintains indices of nonzero elements of the parameter vector during
optimization. In other words, the candidate set contains indices of the k-largest elements in terms
of magnitude of the parameter vector. Before computing Equation (2), we quickly check whether
indices of elements in zt are included or not in D

t+1. If an index j is not included in D
t+1, we can

prune zt
j and skip the corresponding computation of Equation (2) including the gradient computation.

The point is that our method can efficiently perform the above checking procedure. Specifically, our
method utilizes zt

j , which is an upper bound of |zt
j |. Since the computation of the upper bound does

not include the gradient computation, it only requires O(n) time for all the elements in zt. For the
checking procedure, after initializing D

t appropriately, our method finds a threshold for the pruning
by utilizing zt

j , which is a lower bound of |zt
j |. Then, if zt

j is smaller than the threshold for j 62 D
t,

the index j is not included in D
t+1. We describe the details in the next section.

4.2 Upper Bound and Candidate Set

This section introduces candidate set D
t and its updating method. Since we need upper bound zt

j to
efficiently update D

t as described in Section 4.1, we first define zt
j as follows:

Definition 1 Let t
⇤

be 1  t
⇤
< t in Algorithm 1. Then, zt

j at the t-th iteration in Algorithm 1 is

computed as follows:

zt
j = |Gj✓

t⇤ + ⌘(X>y)j | + ||Gj ||2||✓
t
� ✓t⇤

||2, (4)

where G = I � ⌘X>X .

We note that G and X>y are precomputed only once before entering the optimization, and t
⇤ is

automatically decided as described in Section 4.4. zt
j has the following property:

2If I � ⌘X>X and X>y are precomputed, the cost is O(n2) time. If the precomputation is not performed,
the cost is O(mn) time because we first compute h = X✓t

�y at O(mn) time, then compute X>h at O(mn)
time. See the Appendix for a discussion of IHT with sparse matrices.

3
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Speeding up IHT using a pruning strategy
Challenge

◆ Step 1 requires 𝒪(𝑚𝑛) or 𝒪(𝑛2 ) time per iteration and is dominant in the overall cost.
◆ m and n are the numbers of rows and columns of the input matrix X, respectively.

◆We reduce the cost of Step 1 per iteration using a pruning strategy to speed up IHT.
◆ Previous methods mainly reduce the number of iterations to speed up IHT,

e.g. Nesterov acceleration.

Algorithm 1 Iterative Hard Thresholding
1: Input: sparsity level k, step size ⌘

2: Initialization: ✓1
 0, t 1

3: repeat
4: zt

 ✓t
� ⌘rf(✓t); . Performing gradient descent method

5: ✓t+1
 Hk(zt); t t+ 1; . Selecting the k-largest elements in magnitude of zt

6: until a stopping criterion is met

where ⌘ > 0 is the step size, ✓t is the parameter vector at the t-th iteration. Hk(zt) is the hard
thresholding operator that selects the k-largest elements in the magnitude of zt and sets the other
elements to zero. The selection requires O(n log k) time if it uses a heap. The pseudocode is
described in Algorithm 1. See [5, 14, 6, 8, 4, 20, 23, 2] for theoretical discussions of IHT.

From Equation (2) and Algorithm 1, computing gradients rf(✓t) clearly dominates the other cost.
In Equation (2), we use the second equation or the third one to compute zt. They require O(mn)
and O(n2) times in every iteration, respectively2. Therefore, IHT incurs high computation cost when
X 2 Rm⇥n is large.

4 Proposed Algorithm

This section describes our algorithm that reduces the computation cost per iteration in IHT.

4.1 Main Idea

The bottleneck of IHT is the gradient computation to obtain zt of Equation (2): it requires O(mn)
or O(n2) time per iteration. Therefore, we reduce the cost by pruning unnecessary elements in zt

before computing the gradients. For the pruning, we introduce a candidate set D
t such that |D

t
| = k

for the t-th iteration. This set maintains indices of nonzero elements of the parameter vector during
optimization. In other words, the candidate set contains indices of the k-largest elements in terms
of magnitude of the parameter vector. Before computing Equation (2), we quickly check whether
indices of elements in zt are included or not in D

t+1. If an index j is not included in D
t+1, we can

prune zt
j and skip the corresponding computation of Equation (2) including the gradient computation.

The point is that our method can efficiently perform the above checking procedure. Specifically, our
method utilizes zt

j , which is an upper bound of |zt
j |. Since the computation of the upper bound does

not include the gradient computation, it only requires O(n) time for all the elements in zt. For the
checking procedure, after initializing D

t appropriately, our method finds a threshold for the pruning
by utilizing zt

j , which is a lower bound of |zt
j |. Then, if zt

j is smaller than the threshold for j 62 D
t,

the index j is not included in D
t+1. We describe the details in the next section.

4.2 Upper Bound and Candidate Set

This section introduces candidate set D
t and its updating method. Since we need upper bound zt

j to
efficiently update D

t as described in Section 4.1, we first define zt
j as follows:

Definition 1 Let t
⇤

be 1  t
⇤
< t in Algorithm 1. Then, zt

j at the t-th iteration in Algorithm 1 is

computed as follows:

zt
j = |Gj✓

t⇤ + ⌘(X>y)j | + ||Gj ||2||✓
t
� ✓t⇤

||2, (4)

where G = I � ⌘X>X .

We note that G and X>y are precomputed only once before entering the optimization, and t
⇤ is

automatically decided as described in Section 4.4. zt
j has the following property:

2If I � ⌘X>X and X>y are precomputed, the cost is O(n2) time. If the precomputation is not performed,
the cost is O(mn) time because we first compute h = X✓t

�y at O(mn) time, then compute X>h at O(mn)
time. See the Appendix for a discussion of IHT with sparse matrices.

3

𝒪 𝑚𝑛 or 𝒪 𝑛!
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② Compute the smallest absolute value among
the top-k parameters. (A)

③ Compute the upper bounds of the absolute
values of the remaining parameters. (B)

If B ≦ A holds, the parameter can be safely pruned;
otherwise, update the parameter precisely.

Pruning unnecessary updates via upper bounds 
Main Idea

◆We efficiently update the top-k parameters in each iteration by pruning unnecessary parameters. 
◆ The unnecessary parameters are identified by comparing the updated previous iteration's top-k

parameters with the upper bounds of the absolute values of the remaining parameters.

① Update the previous top-k parameters.

Subroutine of main idea
003000-6090

9-46

Previous parameter vector (k = 3)

①

A

② ③

B
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The upper bound is computed based on the 
difference between the previous and current 

parameter vectors.

The subroutine of the main idea returns the same 
result of line 5 in IHT.

Property of upper bound computation 
Main Idea

◆ The upper bounds for all parameters can be efficiently computed at 𝒪 𝑛 time.
◆ Since the pruning is safe, the subroutine of the main idea yields the same result as 𝐻" $ .
◆ Our method achieves the same optimization result as the plain IHT.

Efficient computation of upper bound Consistency of processing result

Algorithm 1 Iterative Hard Thresholding
1: Input: sparsity level k, step size ⌘

2: Initialization: ✓1
 0, t 1

3: repeat
4: zt

 ✓t
� ⌘rf(✓t); . Performing gradient descent method

5: ✓t+1
 Hk(zt); t t+ 1; . Selecting the k-largest elements in magnitude of zt

6: until a stopping criterion is met

where ⌘ > 0 is the step size, ✓t is the parameter vector at the t-th iteration. Hk(zt) is the hard
thresholding operator that selects the k-largest elements in the magnitude of zt and sets the other
elements to zero. The selection requires O(n log k) time if it uses a heap. The pseudocode is
described in Algorithm 1. See [5, 14, 6, 8, 4, 20, 23, 2] for theoretical discussions of IHT.

From Equation (2) and Algorithm 1, computing gradients rf(✓t) clearly dominates the other cost.
In Equation (2), we use the second equation or the third one to compute zt. They require O(mn)
and O(n2) times in every iteration, respectively2. Therefore, IHT incurs high computation cost when
X 2 Rm⇥n is large.

4 Proposed Algorithm

This section describes our algorithm that reduces the computation cost per iteration in IHT.

4.1 Main Idea

The bottleneck of IHT is the gradient computation to obtain zt of Equation (2): it requires O(mn)
or O(n2) time per iteration. Therefore, we reduce the cost by pruning unnecessary elements in zt

before computing the gradients. For the pruning, we introduce a candidate set D
t such that |D

t
| = k

for the t-th iteration. This set maintains indices of nonzero elements of the parameter vector during
optimization. In other words, the candidate set contains indices of the k-largest elements in terms
of magnitude of the parameter vector. Before computing Equation (2), we quickly check whether
indices of elements in zt are included or not in D

t+1. If an index j is not included in D
t+1, we can

prune zt
j and skip the corresponding computation of Equation (2) including the gradient computation.

The point is that our method can efficiently perform the above checking procedure. Specifically, our
method utilizes zt

j , which is an upper bound of |zt
j |. Since the computation of the upper bound does

not include the gradient computation, it only requires O(n) time for all the elements in zt. For the
checking procedure, after initializing D

t appropriately, our method finds a threshold for the pruning
by utilizing zt

j , which is a lower bound of |zt
j |. Then, if zt

j is smaller than the threshold for j 62 D
t,

the index j is not included in D
t+1. We describe the details in the next section.

4.2 Upper Bound and Candidate Set

This section introduces candidate set D
t and its updating method. Since we need upper bound zt

j to
efficiently update D

t as described in Section 4.1, we first define zt
j as follows:

Definition 1 Let t
⇤

be 1  t
⇤
< t in Algorithm 1. Then, zt

j at the t-th iteration in Algorithm 1 is

computed as follows:

zt
j = |Gj✓

t⇤ + ⌘(X>y)j | + ||Gj ||2||✓
t
� ✓t⇤

||2, (4)

where G = I � ⌘X>X .

We note that G and X>y are precomputed only once before entering the optimization, and t
⇤ is

automatically decided as described in Section 4.4. zt
j has the following property:

2If I � ⌘X>X and X>y are precomputed, the cost is O(n2) time. If the precomputation is not performed,
the cost is O(mn) time because we first compute h = X✓t

�y at O(mn) time, then compute X>h at O(mn)
time. See the Appendix for a discussion of IHT with sparse matrices.
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⇤ is
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the cost is O(mn) time because we first compute h = X✓t
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Processing time   
Experiment

◆ Our method was up to 73 times faster than the plain IHT in our experiment.
◆ Our method achieved a large speedup factor for smaller k because it is based on the pruning.
◆ Our method does not need additional hyperparameter tuning while other baselines need it.

Please see our paper for details.
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Optimization result   
Experiment

◆ Our method achieved the same objective values and parameter vectors as those of the plain IHT.
◆ Our method ensures that the parameter vector of each iteration matches perfectly with that of

the plain IHT.
Please see our paper for details.

Table 1: Objective values of the plain IHT and our method for k = {1, 20, 160, 1280}.

dataset method k = 1 k = 20 k = 160 k = 1280

gisette IHT 56.01 ⇥ 10�2 31.99 ⇥ 10�2 14.01 ⇥ 10�2 80.73 ⇥ 10�3

ours 56.01 ⇥ 10�2 31.99 ⇥ 10�2 14.01 ⇥ 10�2 80.73 ⇥ 10�3

robert IHT 99.03 ⇥ 10�1 91.23 ⇥ 10�1 73.56 ⇥ 10�1 66.24 ⇥ 10�1

ours 99.03 ⇥ 10�1 91.23 ⇥ 10�1 73.56 ⇥ 10�1 66.24 ⇥ 10�1

ledgar IHT 12.76 ⇥ 102 82.48 ⇥ 101 50.70 ⇥ 101 35.35 ⇥ 101

ours 12.76 ⇥ 102 82.48 ⇥ 101 50.70 ⇥ 101 35.35 ⇥ 101

real-sim IHT 86.47 ⇥ 10�2 63.84 ⇥ 10�2 40.32 ⇥ 10�2 23.16 ⇥ 10�2

ours 86.47 ⇥ 10�2 63.84 ⇥ 10�2 40.32 ⇥ 10�2 23.16 ⇥ 10�2

epsilon IHT 93.50 ⇥ 10�2 67.24 ⇥ 10�2 44.93 ⇥ 10�2 43.03 ⇥ 10�2

ours 93.50 ⇥ 10�2 67.24 ⇥ 10�2 44.93 ⇥ 10�2 43.03 ⇥ 10�2

of the parameter vector dropped below 10�5 [19, 14]. All the experiments were conducted on a266

3.20GHz Intel CPU with six cores and 64 GB of main memory.267

5.1 Processing Time268

Figure 1 (a)–(e) compare the processing times on logarithmic scale. Our method was up to 73 times269

faster than IHT and outperformed all the baselines in all the settings. Because our method is based on270

the pruning, it achieved a large speedup factor for smaller k. Even when k increased, the processing271

time was significantly shorter than the baselines.272

We note that our method does not need hyperparameter tuning due to using the automatic determina-273

tion technique described in Section 3.4. Specifically, practitioners only need to specify k to use our274

method the same as IHT while the baselines require additional hyperparameter tuning.275

Number of Gradient Computations. Figure 1 (f) compares the number of gradient computations276

between our method and IHT on the gisette dataset. Our method reduced the number of computations277

by up to 98.87%. The result shows the effectiveness of our pruning strategy.278

5.2 Accuracy279

Theorem 2 guarantees that our method achieves the same results as the plain IHT. To verify the280

theorem, we compared the objective values between our method and IHT. Table 1 shows the results281

for k = {1, 20, 160, 1280}, and our method achieved the same objective values as IHT. We obtained282

the same trend results as above in the other settings of k. We note that our method also yielded the283

same support of nonzero elements in the parameter vector and their coefficients as IHT though the284

results are omitted. These results support our theoretical result for Theorem 2.285

6 Conclusion286

We accelerated iterative hard thresholding (IHT) by safely pruning unnecessary gradient computations.287

The main idea is to efficiently maintain the candidate set, which contains indices of nonzero elements288

in the parameter vector, during optimization. Before computing the gradients for each iteration, we289

prune unnecessary elements for the candidate set by utilizing the upper bound. To raise the pruning290

rate, we update the threshold to determine whether an element is included or not in the candidate291

set by using the lower bound. Our method guarantees the same optimization results as the plain292

IHT because our pruning is safe. In addition, it does not need additional hyperparameter tuning.293

Experiments show that our method is up to 73 times faster than IHT without degrading accuracy.294
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Summary   

◆We accelerate IHT that finds the top-k important parameters in a linear regression model.

◆ Our method prunes unnecessary computations by using upper bounds.
◆ Our method guarantees the same optimization results as the plain IHT.
◆ Our method does not need additional hyperparameter tuning.

◆ Experiments demonstrate that our method is up to 73 times faster than the plain IHT
without degrading accuracy.


