

Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability, Reproducibility, and Practicality

Tianle Zhang, Langtian Ma, Yuchen Yan, Yuchen Zhang, Kai Wang, Yue Yang, Ziyao Guo, Wenqi Shao, Yang You, Yu Qiao, Ping Luo, Kaipeng Zhang

NeurIPS 2024

Shanghai Artificial Intelligence Laboratory

Text-to-video (T2V) technology & human evaluation

ullet

ullet

Title	Humeval Validity Cro	owds Ann	otators 1	Fraining	Format	Venue	Year		
GVSD [87]	Table 7: Fu	ll list of su	rveyed pa	apers, who	ere - indicate	es not men	tioned in the	article.	
TGAN [75]	Title	Humeval	Validity	Crowds	Annotators	Training	Format	Venue	Year
Sync-DRAW [60]	LAVIE [96]	1	×	×	30	×	comparative	arXiv	2023
ASVGC [57]	NUWA-XL [110]	×	×	×	-	×	-	arXiv	2023
TGANs-C [69]	Show-1 [114]	1	×	~	-:	×	comparative	arXiv	2023
MoCoGAN [83]	MotionDirector [122]	1	×	~	5	1	comparative	arXiv	2023
CVGST [30]	MagicVideo [123]	1	×	×	-23	×	comparative	arXiv	2023
V2VSynthesis [90]	VideoCrafter1 [10]	1	×	×	2	×	absolute	arXiv	2023
FRGAN [121]	SadTalker [118]	1	×	×	20	×	comparative	CVPR	2023
MD-GAN [104]	Gen1 [20]	1	×	1	5	×	comparative	ICCV	2023
PSGAN+SCGAN [106]	Text2Performer [42]	1	×	×	20	×	absolute	ICCV	2023
Gist [51]	Text2Video-Zero [45]	×	×	×	-	×	-	ICCV	2023
FBF+TS+FG [9]	VideoFusion [55]	×	×	×		×	-	CVPR	2023
Few-shotV2V [89]	DynamiCrafter [102]	1	×	×	49	~	comparative	arXiv	2023
Seg2Vid [68]	MCDiff [12]	×	×	×	2	×	2	arXiv	2023
IRC-GAN [16]	DragNUWA [109]	×	×	×	-	×	-	arXiv	2023
TFGAN [1]	Control-A-Video [13]	1	×	×	18	×	absolute	arXiv	2023
G3AN [95]	DreamPose [44]	1	×	1	50	×	absolute	ICCV	2023
DTVNet [116]	VideoComposer [93]	×	×	×	-	×	•:	arXiv	2023
CAR-Nets [91]	MagicAvatar [115]	×	×	×	23	×	23	arXiv	2023
UOD [4]	Emu Video [25]	1	×	×	5	1	comparative	arXiv	2023
SIVS [17]	MAGVIT [111]	×	×	2	2	×	-	CVPR	202
PVG [59]	12VGen-XL [117]	×	×		-	×		arXiv	2023
SDTFG [19]	SVD [3]	1	×	-	-	×	comparative	arXiv	2023
GODIVA [97]	LFDM [63]	×	×			×	-	CVPR	202
MMVID [29]	MAGE [38]	1	×	×	16	×	absolute	TMM	2023
Imagen Video [35]	Cog Video [37]	1	×	×	90	×	absolute	ICLR	2023
VDM [36]	Dreamix [62]	1	×	×	10	×	absolute	arXiv	2023
Make-A-Video [78]	ED-T2V [52]	×	×	10	2	×	2	IJCNN	2023
StyleGAN-V [79]	Free-Bloom [39]	1	×	×	80	×	absolute	NeurIPS	2023
DIGAN [113]	MM-Diffusion [74]	1	×	1	-	×	absolute	CVPR	2023
FDMLV [31]	PVDM [112]	×	×	-	-	×	-	CVPR	2023
DCK [108]	VIDM [58]	×	×	-	-	×	-	AAAI	2023
MMVID [29]	EvalCrafter [53]	1	×	×	3	1	absolute	CVPR	2024
Phenaki [85]	AIGCBench [21]	1	×	×	42	×	comparative	TBench	2024
NÜWA [99]	T2VScore [100]	1	×	×	10	1	absolute	arXiv	2024
NUWA-Infinity [98]	VBench [40]	1	×	×	-	1	comparative	CVPR	2024
FETV [54]	Seer [26]	~	×	×	54	1	comparative	ICLR	2024
MAGE [38]	Video Factory [92]	×	×	×		×	-	arXiv	2024
VideoLDM [5]	VideoCrafter1 [11]	1	×	×	23	×	comparative	arXiv	2024
PYoCo [24]	AnimateDiff [27]	1	×	×		~	comparative	ICLR	202
LVDM [32]	SEINE [14]	1	×	×	10	×	comparative	ICLR	202
Videogen [50]	ControlVideo [119]	1	×	×	5	×	comparative	ICLR	202
ModelScope [88]	PIA (120)	1	x	-3		×	comparative	CVPR	2024
Tune-A-Video [101]	SimDA [103]	1	×	÷		×	comparative	CVPR	202
	PEEKABOO [41]	×	x			×	-	CVPR	202
	VideoPoet [46]	1	×	~	7	1	comparative	ICMI	202

Table 6. Eall list of compared manager advance indicates not monthly and in the article

A large-scale review of nearly 100 articles revealed the shortcomings of existing human evaluation protocols.

Observations:

 Evaluation methods vary widely, and many lack detailed disclosure of the protocols

Lack Reproducibility

Many employ laboratory-recruited annotators (LRAs) without corresponding training

Lack Reliability

Number of annotations can reach tens of thousands, and increases in $O(N^2)$ trend

Text-to-Video Human Evaluation Protocol (T2VHE)

•Dynamic evaluation module: select annotation objects based on sample importance and model strength differences

 Evaluation metrics: 4 objective indicators, 2 subjective indicators, each with 2 reference perspectives

 Evaluation method: comparative method, quantized by Rao and Kupper model

•Evaluators: provide detailed annotator training, support both crowdsourcing annotators (e.g. AMT) and LRAs

Evaluation metrics & Evaluation method

Annotation interface

Core Question: Which video is more realistic and aesthetically pleasing?

Note: Please select "Equal" only when both videos perform identically across all reference angles, and if there are conflicting views on the reference perspectives, please prioritize them in order.

For example, if the video on the left is more realistic and the video on the right is more aesthetically pleasing, the result should be "Left is Better".

Reference perspectives:

P1. Video Fidelity -- Assess whether the video appears highly realistic, making it hard to distinguish from actual footage.

Example prompt: bat eating fruits while hanging

- Analysis: In the left video, the bats and fruits merge together, and in some frames three wings appear, these scenes are almost unseen in reality. By contrast, the scenes in the right video are comparatively more reasonable.

Conclusion: Right is better.

P2. Aesthetic Appeal -- Evaluate the artistic beauty and aesthetic value of each video frame, including color coordination, composition, and lighting effects.

Example prompt: an aerial footage of a red sky

- Analysis: The left video features richer content with a more diverse selection and combination of colors, and excellent lighting effects. In contrast, the right video is relatively more monotonous, and its color coordination is less appealing.

Conclusion: Left is better.

Instruction example

Evaluators & Dynamic evaluation module

Metric	AMT & Pre-training LRAs	AMT & Post-training LRAs	AMT
Video Quality	0.185	0.411	0.451
Temporal Quality	0.131	0.340	0.369
Motion Quality	0.088	0.338	0.249
Text Alignment	0.069	0.327	0.366
Ethical Robustness	-0.057	0.100	0.177
Human Preference	0.167	0.281	0.297

Comparison of the inter-annotator agreement (IAA)

- Low consensus between the pre-training LRAs and AMT raters, two sets of model rankings are completely different
- Annotation quality of post-training LRAs is almost identical to that of crowdsourcing annotators, so as the rankings

Metric	Pre-training	Post-training		
Video Quality	0.224	0.339		
Temporal Quality	0.178	0.288		
Motion Quality	0.164	0.321		
Text Alignment	0.145	0.236		
Ethical Robustness	0.055	0.107		
Human Preference	0.195	0.284		

 Trained LRAs show significant improvement in interannotator agreement, i.e. annotation quality Algorithm 1 Model Evaluation Algorithm 1: Input: Set of videos \mathcal{V} 2: Pre-processing: 3: for each video $v \in \mathcal{V}$ do compute and normalized automatic metric scores for v $S(v) \leftarrow \text{sum of normalized scores}$ 6: end for 7: for each prompt $pr_i \in \mathcal{P}$ do for each video pair $\{v_k, v_l\} \in \mathcal{V}(pr_i)$ do $pair_score(v_k, v_l) \leftarrow f(|S(v_k) - S(v_l)|, \alpha)$ 9: end for 10: $group_score(pr_i) \leftarrow$ $\sum pair_score(v_k, v_l)$ 11: $\{v_k, v_l\} \in \mathcal{V}(\mathrm{pr}_i)$ 12: end for 13: sorted_groups \leftarrow sort $\{\mathcal{V}(pr_i)\}_{pr_i \in \mathcal{P}}$ by group_score in descending order 14: Hum-evaluation: 15: Evaluate the first N_0 groups in sorted_groups by human and update R. 16: $I \leftarrow g(R)$ 17: for each batch in the remaining video pairs do for each video pair in batch do 18: Discard the video pair with probability $f(|\mathcal{F}(\{v_k, v_l\})|, \alpha)$. 19: if the pair is not discarded then 20: 21: Evaluate the video pair by human and update R. 22: end if end for 23: $I \leftarrow g(R)$ 24: if model ranking is stable over 5 consecutive batches then 25: 26: break end if 27: 28: end for 29: Output: Final model rankings and updated intensities I.

Human evaluation result

Analysis of results:

- \bullet
- Annotation results of the trained LRAs closely mirror those of the AMT personnel
- Closed-source models typically perform better.

Annotation results obtained by the pre-training LRAs markedly differ from those of the other three groups.

Module validation

Verification of Effectiveness

- \checkmark Dynamic module cuts annotation costs to about 53% of the original expense while achieving comparable outcomes.
- ✓ Dynamic module demonstrates a nearly linear growth in annotation demands as the number of models increases.

Verification of Reliability

- Pre-evaluation annotation ensures that valuable samples are not discarded
- \checkmark Bootstrap confidence intervals shows that it only needs a small part of annotations to obtain a stable estimate of model rankings

Thank You!

Code: <u>https://github.com/ztlmememe/T2VHE</u> Paper Link: <u>https://arxiv.org/abs/2406.08845</u>