









HARVARD

**MEDICAL SCHOOL** 



мбн

1811



City University of Hong Kong

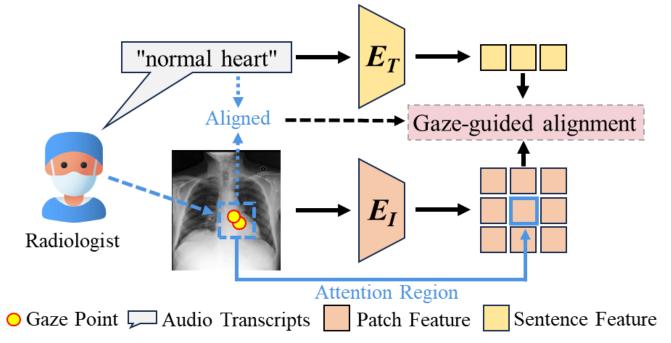
MASSACHUSETTS

GENERAL HOSPITAL



Chong Ma<sup>1</sup>, Hanqi Jiang<sup>2</sup>, Wenting Chen<sup>3</sup>, Yiwei Li<sup>2</sup>, Zihao Wu<sup>2</sup>, Xiaowei Yu<sup>4</sup>, Zhengliang Liu<sup>2</sup>, Lei Guo<sup>1</sup>, Dajiang Zhu<sup>4</sup>, Tuo Zhang<sup>1</sup>, Dinggang Shen<sup>5</sup>, Tianming Liu<sup>2</sup>, Xiang Li<sup>6\*</sup> <sup>1</sup>Northwest Polytechnical University <sup>2</sup>University of Georgia <sup>3</sup>City University of Hong Kong <sup>4</sup>University of Texas at Arlington <sup>5</sup>ShanghaiTech University & Shanghai United Imaging Intelligence Co. <sup>6</sup>Massachusetts General Hospital & Harvard Medical School

# Introduction



#### **Motivation:**

- Overcoming alignment complexity in medical multi-modal learning.
- Leveraging radiologists' eye-gaze data for efficient multimodal alignment.

#### **Contribution:**

- A novel framework EGMA for medical multi-modal alignment, which makes the first attempt to integrate eyegaze data into vision-language pre-training.
- EGMA demonstrates that even a small amount of eye-gaze data can effectively assist in multi-modal pre-training and improve the feature representation ability of the model.

## **Cross-modality Mapping**

• We generate image-to-text and text-to-image alignment weight matrices  $W^{I2T}$  and  $W^{T2I}$  using matrices  $GS_k$ ,  $x_k^{P2S}$ and  $x_k^{S2P}$ , as shown below:

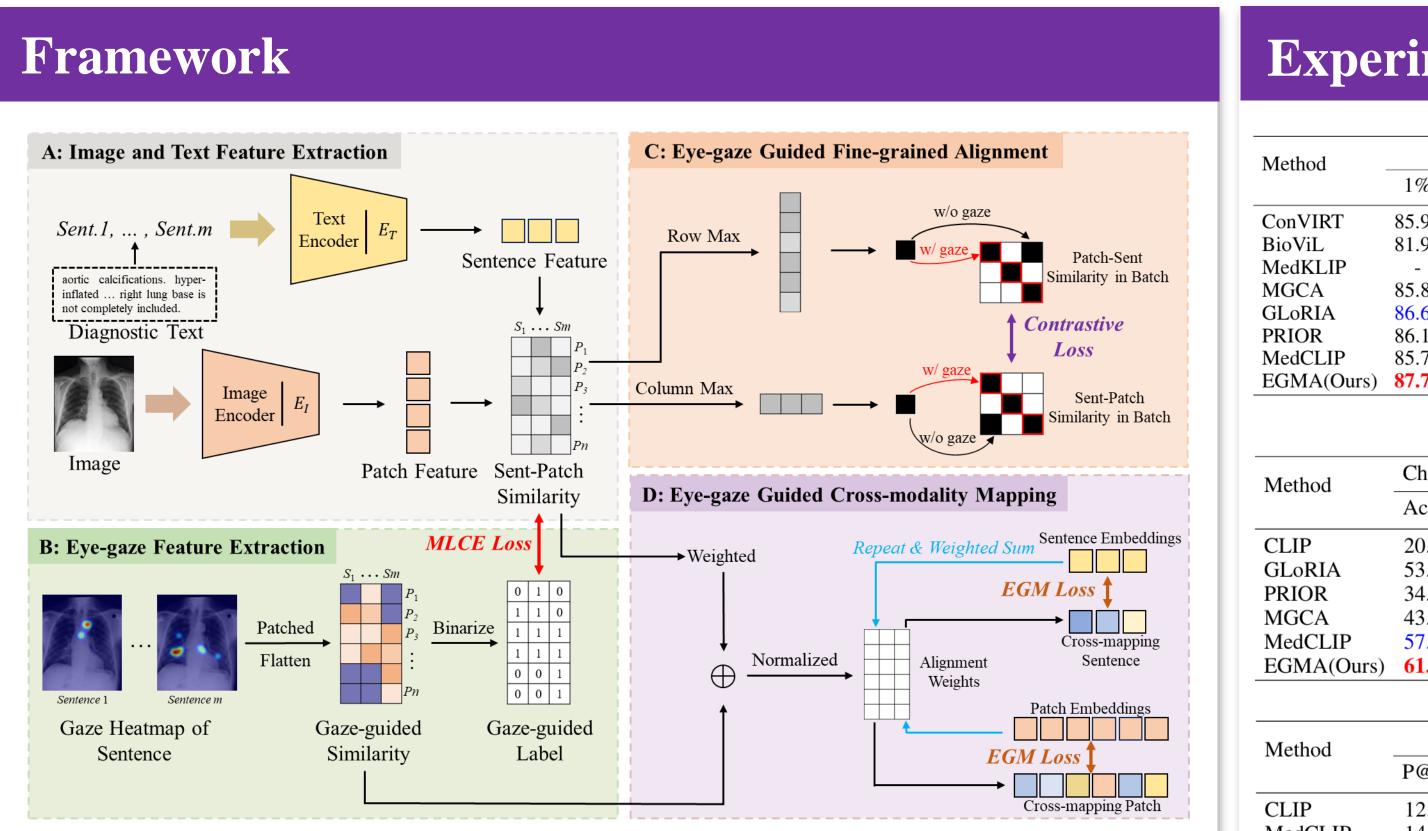
$$W^{I2T} = norm(\omega(x_k^{P2S}) + GS_k), W^{T2I} = norm(\omega(x_k^{S2P}) + (GS_k)^T)$$

• Here, *norm* denotes normalization, and  $\omega$  applies sparse and binarization operations. Using the weight matrices, we map text features  $S_k^m$  to image features  $Cross_P_k^m$  and vice versa:

$$Cross \_P_k^i = \sum_{j=1}^m S_k^j \cdot W_{ij}^{I2T}, Cross\_S_k^j = \sum_{i=1}^n P_k^i \cdot W_{ji}^{T2I}$$

• Finally, these mapped features and their corresponding target features are used to compute the alignment contrastive loss:

$$L_{EGM} = \frac{1}{2} \sum_{k=1}^{b} (mL_{k}^{I} + mL_{k}^{T})$$



Overview: Our EGMA framework processes images and text through an encoder, extracting patch features and sentence feature representations to generate a fine-grained similarity matrix for instances. Subsequently, two types of eye-gaze-based auxiliary information are utilized to achieve fine-grained alignment and cross-mapping alignment at different stages.

#### **Eye-gaze Guided Fine-grained Alignment**

 $\hat{Z}_{k}^{I}$ 

# **Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning**

We utilize eye-gaze-guided fine-grained alignment in our model to enhance the interaction between patch and sentence features. Based on local patch and sentence features, we compute the similarities between sentences and patches in both directions. Using these similarity matrices, we generate a gaze-guided label matrix  $GL_k$  and optimize it through multi-label cross-entropy (MLCE) loss. The fine-grained features are calculated as:

$$= \frac{1}{n} \sum_{i=1}^{n} \max_{j} [(x_k^{P2S})_{ij}], \hat{z}_k^T = \frac{1}{m} \sum_{j=1}^{m} \max_{i} [(x_k^{S2P})_{ji}]$$

These fine-grained features are used to enhance the alignment between image and text, ensuring that relevant information at the local level is properly captured. Finally, the total Eye-Gaze Fine-grained (EGF) alignment loss is calculated as:

$$_{EGF} = \frac{1}{2b} \sum_{k=1}^{b} (fL_k^{S2P} + fL_k^{P2S}) + \frac{1}{2} \sum_{k=1}^{b} (\hat{L}_k^{T2I} + \hat{L}_k^{I2T})$$

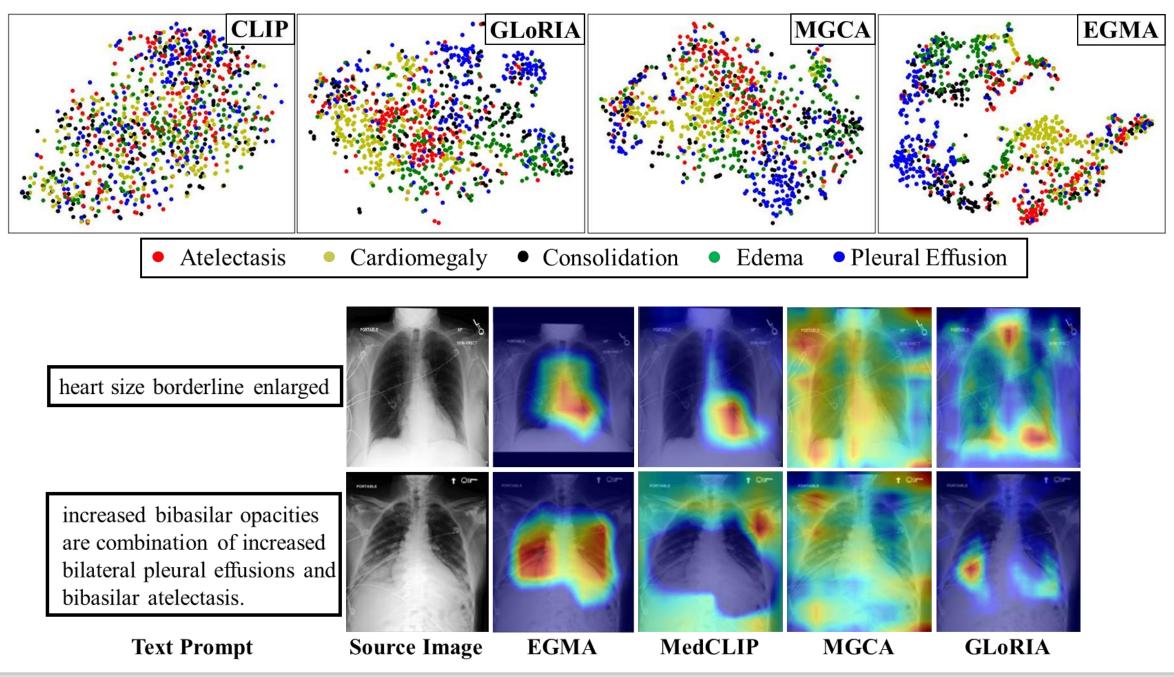
## **Experimental Results**

| Method     | CheXpert |       | RSNA  |       |       | SIIM-ACR |              |              |       |
|------------|----------|-------|-------|-------|-------|----------|--------------|--------------|-------|
|            | 1%       | 10%   | 100%  | 1%    | 10%   | 100%     | 1%           | 10%          | 100%  |
| ConVIRT    | 85.90    | 86.80 | 87.30 | 77.40 | 80.10 | 88.60    | -            | -            | -     |
| BioViL     | 81.95    | 85.37 | 88.62 | 81.76 | 85.68 | 88.64    | 80.26        | 82.79        | 90.51 |
| MedKLIP    | -        | -     | -     | 87.31 | 87.99 | 89.31    | 85.27        | 90.71        | 91.88 |
| MGCA       | 85.80    | 87.66 | 89.30 | 85.22 | 87.54 | 89.24    | 86.12        | 89.66        | 92.16 |
| GLoRIA     | 86.60    | 87.80 | 88.10 | 86.10 | 88.00 | 88.60    | -            | -            | -     |
| PRIOR      | 86.16    | 87.08 | 89.08 | 86.72 | 88.07 | 89.19    | 88.35        | 89.72        | 92.49 |
| MedCLIP    | 85.74    | 87.49 | 88.02 | 87.61 | 88.19 | 89.10    | 88.84        | 91.13        | 92.18 |
| EGMA(Ours) | 87.71    | 88.92 | 89.50 | 88.41 | 89.40 | 90.10    | <b>90.78</b> | <b>92.17</b> | 93.29 |

| Method     | CheXpe |  |  |  |
|------------|--------|--|--|--|
|            | Acc.↑  |  |  |  |
| CLIP       | 20.10  |  |  |  |
| GLoRIA     | 53.30  |  |  |  |
| PRIOR      | 34.90  |  |  |  |
| MGCA       | 43.60  |  |  |  |
| MedCLIP    | 57.50  |  |  |  |
| EGMA(Ours) | 61.30  |  |  |  |
|            |        |  |  |  |

| Method     | In    | nage-to- | text  | Text-to-image |       |       |
|------------|-------|----------|-------|---------------|-------|-------|
| Method     | P@1↑  | P@5↑     | P@10↑ | P@1↑          | P@5↑  | P@10↑ |
| CLIP       | 12.75 | 12.48    | 10.03 | 5.00          | 12.50 | 12.50 |
| MedCLIP    | 14.50 | 15.98    | 15.86 | 12.50         | 12.50 | 15.00 |
| MGCA       | 35.00 | 27.80    | 23.33 | 45.00         | 47.50 | 44.00 |
| GLoRIA     | 38.75 | 31.62    | 24.51 | 52.50         | 49.00 | 50.25 |
| ConVIRT    | -     | -        | -     | 60.25         | 60.00 | 57.50 |
| EGMA(Ours) | 42.65 | 37.50    | 28.84 | 80.00         | 74.50 | 69.50 |

## **Visualization Results**









EGMA Code

**Supervised Classification:** Comparison results of supervised classification task with other SOTA models on CheXpert, RSNA, and SIIM-ACR datasets. Area under ROC curve (AUROC) is reported with different portions of training data: 1%, 10%, 100%.

| t 5x200 | RS           | NA    | SIIM-ACR |       |  |
|---------|--------------|-------|----------|-------|--|
| F1↑     | Acc.↑        | F1↑   | Acc.↑    | F1↑   |  |
| 9.12    | 25.03        | 22.07 | 49.39    | 47.98 |  |
| 48.99   | 29.15        | 28.54 | 22.57    | 22.57 |  |
| 30.56   | 76.77        | 51.80 | 50.00    | 33.33 |  |
| 41.37   | 60.83        | 57.77 | 30.03    | 25.45 |  |
| 55.97   | 43.09        | 31.01 | 58.40    | 57.85 |  |
| 60.38   | <b>76.97</b> | 43.49 | 63.62    | 61.46 |  |

**Zero-shot Classification:** Comparison results of zero-shot classification tasks with other SOTA models on CheXpert 5x200, RSNA, and SIIM-ACR datasets. The Accuracy (Acc.) and F1-score (F1) metrics are reported.

**Image Retrieval:** Comparison results of zero-shot retrieval task with other SOTA models on CheXpert 8x200 dataset. The Precision at Top-1, Top-5, and Top-10 are reported.