

* Equal contribution.

The Spurious Trap

Common Sight

Camels

Rare but not impossible

The Spurious Trap

The Spurious Trap

<u>Cow</u>

<u>Camel</u> 🗙

Theorem 1: Partition Rank

Theorem 1: Partition Rank

Theorem 1: Partition Rank

Theorem: rank(Bias-Aligned) $\leq rank$ (Bias-Conflicting)

Propagation Bottleneck

Redundant Dimension

Some Attribute (A_i)

Propagation Success

•

Propagation Failure

Probability of survival (π) for any attribute (i) decreases with depth (d): $\pi_i(d) \propto r^{-d}$

The Simplicity Bias and Survival Probability

Attribute 2 (A_2)

- Probability of survival (π) for any attribute (i) decreases with depth (d): $\pi_i(d) \propto r^{-d}$
- Attributes with a lower rank have a higher probability of survival at any given depth:

 $\pi_i(d) \ge \pi_j(d)$, where $rank(A_i) \le rank(A_j)$.

Theorem 2: Depth-Rank Duality (Implicit Rank Regularization)

Theorem: For representation spaces at <u>deeper layers</u>, <u>lower rank attributes</u> are more likely to <u>minimize the empirical risk</u>.

Empirical Evidence – Linear Decodability (Untrained)

Dataset: Colored MNIST (Color-Digit Spurious Correlation)

Experiment

Result: Core (higher) rank attribute – "digit", harder to decode from deeper MLPs

Empirical Evidence – Linear Decodability (under SGD)

Dataset: Colored MNIST (Color-Digit Spurious Correlation)

Experiment

Result:

Core (higher) rank attribute – "digit", harder to decode from deeper MLPs – a characteristic retained under SGD.

Stage 1: Bias Identification through depth modulation.

Stage 1: Bias Identification through depth modulation.

Stage 2: Bias mitigation via knowledge distillation.

Linear Decodability (under SGD) of DeNetDM

Dataset: Colored MNIST (Color-Digit Spurious Correlation)

Experiment: Linear Decodability Dynamics of DNetDM Training

Result: Accentuated Simplicity Bias

Comparison with State-of-the-Art

Methods	Group		CMNIST					C-CIFAR10				
	Info	0.5	1.0	2.0	5.0		0.5	1.0	2.0	5.0		
Group DRO	✓	59.67	71.33	76.30	84.40		33.44	38.30	45.81	57.32		
ERM	X	35.34 (0.13)	50.34 (0.16)	62.29 (1.47)	77.63 (0.13)		23.08 (1.25)	25.82 (0.33)	30.06 (0.71)	39.42 (0.64)		
JTT	×	53.03 (3.89)	61.68 (2.02)	74.23 (3.21)	85.03 (1.10)		24.73 (0.60)	26.90 (0.31)	33.40 (1.06)	42.20 (0.31)		
LfF	×	63.39 (1.97)	74.01 (2.21)	80.48 (0.45)	85.39 (0.94)		28.57 (1.30)	33.07 (0.77)	39.91 (0.30)	50.27 (1.56)		
DFA	×	59.12 (3.15)	71.04 (1.02)	82.86 (2.27)	88.29 (1.50)		29.95 (0.71)	36.49 (1.79)	41.78 (2.29)	51.13 (1.28)		
LC	×	63.48 (5.22)	78.41 (1.95)	83.63 (1.43)	88.18 (1.59)		34.56 (0.69)	37.34 (1.26)	47.81 (2.00)	54.55 (1.26)		
DeNetDM	×	74.72 (0.99)	85.22 (0.76)	89.29 (0.51)	93.54 (0.22)		38.93 (1.16)	44.20 (0.77)	47.35 (0.70)	56.30 (0.42)		

- **Strong generalization** to datasets with both simple and complex bias / core attributes.
- Around **5% improvement** margins.
- No bias labels / supervision or augmentation.

Methods	Group	BA	AR	BFFHQ	CelebA
	Info	1.0	5.0	1.0	-
ERM	×	57.65 (2.36)	68.60 (2.25)	56.7 (2.7)	47.02
JTT	×	58.17 (3.30)	68.53 (3.29)	65.3 (2.5)	76.80
LfF	×	57.71 (3.12)	67.48 (0.46)	62.2 (1.6)	-
DFA	×	52.31 (1.00)	63.50 (1.47)	63.9 (0.3)	65.26
LC	×	70.94 (1.46)	74.32 (2.42)	70.0 (1.4)	-
DeNetDM (ours)	×	73.84 (2.56)	79.61 (3.18)	75.7 (2.8)	81.04

Conclusions

• Explored the relationships between the depth of a neural network, the rank of an attribute, and the susceptibility to spurious correlations.

Conclusions

- Explored the relationships between the depth of a neural network, the rank of an attribute, and the susceptibility to spurious correlations.
- Introduced the idea of depth modulation for identifying and mitigating biases in neural networks.

Conclusions

- Explored the relationships between the depth of a neural network, the rank of an attribute, and the susceptibility to spurious correlations.
- Introduced the idea of depth modulation for identifying and mitigating biases in neural networks.
- Strong empirical results confirming theoretical claims, surpassing SOTA on numerous benchmarks.

Project Page

https://vssilpa.github.io/denetdm/