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The Spurious Trap

Common Sight

Rare but not impossible

Camels Cows
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The Spurious Trap

Spuriously Correlated / Bias-Aligned

Bias-Conflicting



4

The Spurious Trap

Camel

Cow

Camel

Cow

Train set Camels

Train set Cows

Deep Neural 
Network



5

Theorem 1: Partition Rank

Samples (𝑋)
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Theorem 1: Partition Rank

Bias-ConflictingBias-AlignedSamples (𝑋)
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Theorem 1: Partition Rank

Samples (𝑋)

Theorem: 𝑟𝑎𝑛𝑘(Bias-Aligned) ≤ 𝑟𝑎𝑛𝑘(Bias-Conflicting)

Bias-ConflictingBias-Aligned
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Propagation Bottleneck

Some Attribute (𝐴𝑖)Redundant Dimension

• Probability of survival (𝜋) for any 
attribute (𝑖) decreases with depth (𝑑):

𝜋𝑖(𝑑) ∝ 𝑟−𝑑

Propagation Success Propagation Failure
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The Simplicity Bias and Survival Probability

Attribute 2 (𝐴2)Attribute 1 (𝐴1)Redundant Dimension

• Probability of survival (𝜋) for any 
attribute (𝑖) decreases with depth (𝑑):

𝜋𝑖(𝑑) ∝ 𝑟−𝑑

• Attributes with a lower rank have a 
higher probability of survival at any 
given depth:

𝜋𝑖 𝑑 ≥ 𝜋𝑗 𝑑 ,

      where 𝑟𝑎𝑛𝑘(𝐴𝑖) ≤ 𝑟𝑎𝑛𝑘(𝐴𝑗).
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Theorem 2: Depth-Rank Duality (Implicit Rank Regularization)

Attribute 2 (𝐴2)Attribute 1 (𝐴1)Redundant Dimension

• Probability of survival (𝜋) for any 
attribute (𝑖) decreases with depth (𝑑):

𝜋𝑖(𝑑) ∝ 𝑟−𝑑

• Attributes with a lower rank have a 
higher probability of survival at any 
given depth:

𝜋𝑖 𝑑 ≥ 𝜋𝑗 𝑑 ,

      where 𝑟𝑎𝑛𝑘(𝐴𝑖) ≤ 𝑟𝑎𝑛𝑘(𝐴𝑗).

Theorem: For representation spaces at deeper layers, lower rank attributes 
are more likely to minimize the empirical risk.
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Empirical Evidence – Linear Decodability (Untrained)

Dataset: Colored MNIST
 (Color-Digit Spurious Correlation)

Experiment

Result:
Core (higher) rank 
attribute – “digit”, 
harder to decode from 
deeper MLPs
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Empirical Evidence – Linear Decodability (under SGD)

Experiment

Result:
Core (higher) rank 
attribute – “digit”, 
harder to decode from 
deeper MLPs – a 
characteristic retained 
under SGD.

Dataset: Colored MNIST
 (Color-Digit Spurious Correlation)
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DeNetDM: Debiasing by Network Depth Modulation

Stage 1: Bias Identification through depth modulation.
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DeNetDM: Debiasing by Network Depth Modulation

Stage 2: Bias mitigation via knowledge distillation.Stage 1: Bias Identification through depth modulation.
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Linear Decodability (under SGD) of DeNetDM

Experiment: Linear Decodability 
Dynamics of DNetDM Training

Result:
Accentuated Simplicity Bias

Dataset: Colored MNIST
 (Color-Digit Spurious Correlation)
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Comparison with State-of-the-Art

• Strong generalization to datasets with 
both simple and complex bias / core 
attributes.

• Around 5% improvement margins.
• No bias labels / supervision or 

augmentation.
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Conclusions

• Explored the relationships between the depth of a neural network, the rank of an attribute, and 
the susceptibility to spurious correlations.
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Conclusions
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• Introduced the idea of depth modulation for identifying and mitigating biases in neural networks.
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Conclusions

• Explored the relationships between the depth of a neural network, the rank of an attribute, and 
the susceptibility to spurious correlations.

• Introduced the idea of depth modulation for identifying and mitigating biases in neural networks.

• Strong empirical results confirming theoretical claims, surpassing SOTA on numerous benchmarks.
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DeNetDM: Debiasing by Network Depth Modulation

Project Page

https://vssilpa.github.io/denetdm/

https://vssilpa.github.io/denetdm/
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