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Challenge: Storage Size



Quantization 

Our goal: Extremely Low-bit Text-to-Image Diffusion Model (i.e., 1.99 bits UNet)
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Mixed Precision Strategy



Quantization 
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Per-Layer Quantization Error

Mixed Precision Precision

Measure the impact when quantizing each layer:
• Quantize each single layer to 1,2,3 bits
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Per-Layer Quantization Error

Mixed Precision Precision

Measure the impact when quantizing each layer:
• Quantize each single layer to 1,2,3 bits
• Generate images from quantized models
• Calculate the metrics compared to full-precision model: MSE, CLIP Score, PSNR, LPIPS



Per-Layer Quantization Error

Mixed Precision Precision
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Per-Layer Quantization Error

Which metrics should we use? 

Observation 1: MSE, PSNR, and LPIPS show strong correlation and they correlate well with the visual 
perception of image quality.

Conclusion: We adopt MSE as our main quantitative metric to represent the PSNR and LPIPS.

MSE 
vs. 

PSNR

MSE
vs.

LPIPS

MSE
vs.

CLIP Score

1 bit 0.870 0.984 0.733

2 bit 0.882 0.989 0.473

3 bit 0.869 0.991 0.535

Pearson correlation (absolute value) between different metrics



Per-Layer Quantization Error

Which metrics should we use? 

Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, 
as reflected in larger CLIP score changes.
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Per-Layer Quantization Error

Which metrics should we use? 

Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, 
as reflected in larger CLIP score changes.

CA tok
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CA tov
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RB conv RB conv shortcut

CA tok

RB conv shortcut

CA tok

CA tok

CA toq
CA tov

CA tok RB conv RB conv shortcut

CA tok
RB conv shortcut

CA tok

MSE: CA tok < RB conv
CLIP Score drop: CA tok > RB conv

Average Quantization Error:

A teddy bear on a skateboard in Times Square, doing tricks on a cardboard box ramp 

Adopt CLIP score as our complementary quantitative metrics.



Per-Layer Quantization Error

Which metrics should we use? 

Conclusion: MSE, CLIP Score



Deciding the Optimal Precision

1. Assign bits based on MSE (For one layer):

3-bit sensitivity score < threshold? 

Assign this layer with 3 bits 

2-bit sensitivity score < threshold? 

Assign this layer with 2 bits 

1-bit sensitivity score < threshold? 

Assign this layer with 1 bit 

Assign this layer with 4 bits 

Yes

Yes No

No

Yes No

: MSE

: Parameter size

: Parameter size factor

Sensitivity score



Deciding the Optimal Precision

2. Adjust bits based on CLIP scores (For one layer):

CLIP score drop in highest 2% layers? 

CLIP score drop in highest 5% layers? 

CLIP score drop in highest 10% layers? 

Assign 3 more bit 

Assign 2 more bit 

Assign 1 more bit 

Yes

Yes

Yes

No

No
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Initialization

Time Embedding Pre-computing and Caching
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Cached Time 
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Stable Diffusion BitsFusion: Time Feature Caching

During inference stage, only caching T time features (T is the sampling steps, T <= 50 in stable diffusion).

Storage Saving



Initialization

Adding Balance Integer

97% of layers exhibiting skewness between [-0.5, 0.5]

Weight Distribution of layers in Stable Diffusion is symmetric

0

Is weight distribution symmetric in Stable Diffusion?



Initialization

Adding Balance Integer

2-bit mapping

Unbalance in low-bit (e.g., 2 bits) quantization

0 1 2-1

0



Initialization

Adding Balance Integer

0

2-bit mapping

balanced values

Add one value

2-bit mapping

Unbalance in low-bit (e.g., 2 bits) quantization

0 1 2-1 0 1 2-1-2

0



Initialization

Scaling Factor Initialization via Alternating Optimization

2-bit mapping

0

Min-Max initialization mapping

Drawback: 
Large quantization error in 
low-bit (e.g., 2 bits) quantization 

0 1 2-1-2



Initialization

Scaling Factor Initialization via Alternating Optimization

2-bit mapping

0

Min-Max initialization mapping

Drawback: 
Large quantization error in 
low-bit (e.g., 2 bits) quantization 

0 1 2-1-2

Int

Optimize

Minimize Initial Quantization Error
By Updating Scaling Factor



Two-stage Training Pipeline
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Stage-I Training
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Stage-I Training
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Stage-I Training
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Stage-I Training

Quantization Error-aware Time Step Sampling

Observation: the quantization error keeps increasing as the time steps approach t = 999.

Solution: Sample more time steps exhibiting the larger quantization errors near t = 999 by Beta distribution.

Motivation: Different Quantization Error at Different Time Steps

Quantization error of predicted latent features between quantized model and FP model
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Stage-II Training

Fine-tuning with Noise Prediction
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Results



Results

Generated Images

Stable Diffusion v1.5, 32 bits

BitsFusion, 1.99 bits

Sampler: PNDM
Steps: 50
Seed: 1024



Results

Quantitative performance

Ours-I: Stage-I training
Ours-II: Stage-II training

BitsFusion consistently outperforms Stable Diffusion v1.5

CLIP Score on 30K MS-COCO. TIFA Scores GenEval Scores



Results

Human Evaluation

Given a prompt, which image has better aesthetics and image-text alignment?

User preference of generated images from PartiPrompts (P2)



Results

Effect of each method

0.2797

0.3156

0.3183

Stable Diffusion v1.5 BitsFusion, 1.99 bits

32 bits

Stage-I Stage-II

UNet 

Adding Methods

Average CLIP score across CFG scales 3.5, 5.5, 7.5, 9.5 on 1K PartiPrompts

2.32 bits
2.32 bits

1.99 bits
1.99 bits

1.99 bits

2 bits

Average CLIP score
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More comparisons
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Results

More comparisons

Sampler: PNDM
Steps: 50
Seed: 1024

Stable Diffusion v1.5, 32 bits

BitsFusion, 1.99 bits



Thank you
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