# BitsFusion: 1.99 bits Weight Quantization of Diffusion Model

Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey Tulyakov, Jian Ren

Snap Inc. Rutgers University

### Text-to-Image Diffusion Model

#### **Stable Diffusion**



#### **Challenge: Storage Size**



#### Quantization

Our goal: Extremely Low-bit Text-to-Image Diffusion Model (i.e., 1.99 bits UNet)

#### **Overview of BitsFusion Pipeline**





Quantized UNet

Initialization

#### **Overview of BitsFusion Pipeline**



#### **Overview of BitsFusion Pipeline**



#### Outline

- Mixed Precision Strategy
  - Per-Layer Quantization Error Analysis
  - Deciding the Mixed Precision
- Training Extreme Low-bit Diffusion Model
  - Initialization Schemes
  - Two-stage Training Pipeline
- Results

# **Mixed Precision Strategy**

#### Quantization



Saving Storage Size

#### **Mixed Precision Precision**

Measure the impact when quantizing each layer:

• Quantize each single layer to 1,2,3 bits

#### **Mixed Precision Precision**

Measure the impact when quantizing each layer:

- Quantize each single layer to 1,2,3 bits
- Generate images from quantized models

#### **Mixed Precision Precision**

Measure the impact when quantizing each layer:

- Quantize each single layer to 1,2,3 bits
- Generate images from quantized models
- Calculate the metrics compared to full-precision model: MSE, CLIP Score, PSNR, LPIPS

#### **Mixed Precision Precision**



#### Which metrics should we use?

|       | MSE         | MSE          | MSE               |
|-------|-------------|--------------|-------------------|
|       | vs.<br>PSNR | vs.<br>LPIPS | vs.<br>CLIP Score |
| 1 bit | 0.870       | 0.984        | 0.733             |
| 2 bit | 0.882       | 0.989        | 0.473             |
| 3 bit | 0.869       | 0.991        | 0.535             |

Pearson correlation (absolute value) between different metrics

Observation 1: MSE, PSNR, and LPIPS show strong correlation and they correlate well with the visual perception of image quality.

Conclusion: We adopt MSE as our main quantitative metric to represent the PSNR and LPIPS.

#### Which metrics should we use?

Average Quantization Error:



Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, as reflected in larger CLIP score changes.

#### Which metrics should we use?

Average Quantization Error:



Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, as reflected in larger CLIP score changes.



A teddy bear on a skateboard in Times Square, doing tricks on a cardboard box ramp

#### Which metrics should we use?

Average Quantization Error:



Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, as reflected in larger CLIP score changes.



A teddy bear on a skateboard in Times Square, doing tricks on a cardboard box ramp

Adopt CLIP score as our complementary quantitative metrics.

Which metrics should we use?

**Conclusion: MSE, CLIP Score** 

#### **Deciding the Optimal Precision**

Sensitivity score

$$\mathcal{S}_{i,b} = M_{i,b} N_i^{-\eta}$$

 $M_{i,b}$  : MSE

- $N_i$  : Parameter size
- $\eta_{\phantom{a}}$  : Parameter size factor

1. Assign bits based on MSE (For one layer):



#### **Deciding the Optimal Precision**

2. Adjust bits based on CLIP scores (For one layer):



#### **Time Embedding Pre-computing and Caching**



#### **Time Embedding Pre-computing and Caching**



#### **Time Embedding Pre-computing and Caching**



During inference stage, only caching T time features (T is the sampling steps, T <= 50 in stable diffusion).

#### Initialization Adding Balance Integer

# Is weight distribution symmetric in Stable Diffusion?





97% of layers exhibiting skewness between [-0.5, 0.5]

Weight Distribution of layers in Stable Diffusion is symmetric

#### Initialization Adding Balance Integer



Unbalance in low-bit (e.g., 2 bits) quantization

#### Initialization Adding Balance Integer



#### Scaling Factor Initialization via Alternating Optimization



Drawback: Large quantization error in low-bit (e.g., 2 bits) quantization

#### **Scaling Factor Initialization via Alternating Optimization**



Minimize Initial Quantization Error By Updating Scaling Factor



Drawback: Large quantization error in low-bit (e.g., 2 bits) quantization

# **Two-stage Training Pipeline**

**Loss Function** 

# CFG-aware Quantization Distillation



**Loss Function** 

# CFG-aware Quantization Distillation



**Loss Function** 

# CFG-aware Quantization Distillation



**Loss Function** 

### Feature Distillation





**Loss Function** 

#### **Overall Distillation**



# Stage-I Training Quantization Error-aware Time Step Sampling

Motivation: Different Quantization Error at Different Time Steps

Quantization error of predicted latent features between quantized model and FP model



Observation: the quantization error keeps increasing as the time steps approach t = 999.

Solution: Sample more time steps exhibiting the larger quantization errors near t = 999 by Beta distribution.

# **Stage-I Training**

**Loss Function** 

#### **Overall Distillation**



**Training Stage** 

# **Stage-II Training**

#### **Fine-tuning with Noise Prediction**

**Stage-II Loss** 



**Training Stage** 

#### **Generated Images**

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits



#### **Quantitative performance**



CLIP Score on 30K MS-COCO.



**GenEval Scores** 

Ours-I: Stage-I training Ours-II: Stage-II training

BitsFusion consistently outperforms Stable Diffusion v1.5

#### **Human Evaluation**

Given a prompt, which image has better aesthetics and image-text alignment?



User preference of generated images from PartiPrompts (P2)

Effect of each method



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

#### Stable Diffusion v1.5, 32 bits



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

#### Stable Diffusion v1.5, 32 bits



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

#### Stable Diffusion v1.5, 32 bits



More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

#### Stable Diffusion v1.5, 32 bits



Thank you