BitsFusion: 1.99 bits Weight Quantization of Diffusion Model

Yang Sui, Yanyu Li, Anil Kag, Yerlan Idelbayev, Junli Cao, Ju Hu, Dhritiman Sagar, Bo Yuan, Sergey Tulyakov, Jian Ren

Snap Inc. Rutgers University

Text-to-Image Diffusion Model

Stable Diffusion

Challenge: Storage Size

Quantization

Our goal: Extremely Low-bit Text-to-Image Diffusion Model (i.e., 1.99 bits UNet)

Overview of BitsFusion Pipeline

Quantized UNet

Initialization

Overview of BitsFusion Pipeline

Overview of BitsFusion Pipeline

Outline

- Mixed Precision Strategy
	- Per-Layer Quantization Error Analysis
	- Deciding the Mixed Precision
- Training Extreme Low-bit Diffusion Model
	- Initialization Schemes
	- Two-stage Training Pipeline
- **Results**

Mixed Precision Strategy

Quantization

Saving Storage Size

Mixed Precision Precision

Measure the impact when quantizing each layer:

• Quantize each single layer to 1,2,3 bits

Mixed Precision Precision

Measure the impact when quantizing each layer:

- Quantize each single layer to 1,2,3 bits
- Generate images from quantized models

Mixed Precision Precision

Measure the impact when quantizing each layer:

- Quantize each single layer to 1,2,3 bits
- Generate images from quantized models
- Calculate the metrics compared to full-precision model: MSE, CLIP Score, PSNR, LPIPS

Mixed Precision Precision

Which metrics should we use?

Pearson correlation (absolute value) between different metrics

Observation 1: MSE, PSNR, and LPIPS show strong correlation and they correlate well with the visual perception of image quality.

Conclusion: We adopt MSE as our main quantitative metric to represent the PSNR and LPIPS.

Which metrics should we use?

Average Quantization Error:

Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, as reflected in larger CLIP score changes.

Which metrics should we use?

Average Quantization Error:

Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, as reflected in larger CLIP score changes.

A teddy bear on a skateboard in Times Square, doing tricks on a cardboard box ramp

Which metrics should we use?

Average Quantization Error:

Observation 2: Although some layers show smaller MSE, they may experience larger semantic degradation, as reflected in larger CLIP score changes.

A teddy bear on a skateboard in Times Square, doing tricks on a cardboard box ramp

Adopt CLIP score as our complementary quantitative metrics.

Which metrics should we use?

Conclusion: MSE, CLIP Score

Deciding the Optimal Precision

Sensitivity score

$$
\mathcal{S}_{i,b}=M_{i,b}N_i^{-\eta}
$$

 $M_{i,b}: \mathsf{MSE}$

- N_i : Parameter size
- η : Parameter size factor

1. Assign bits based on MSE (For one layer):

Deciding the Optimal Precision

Time Embedding Pre-computing and Caching

Time Embedding Pre-computing and Caching

Time Embedding Pre-computing and Caching

During inference stage, only caching T time features (T is the sampling steps, T <= 50 in stable diffusion).

Adding Balance Integer

97% of layers exhibiting skewness between [-0.5, 0.5]

Weight Distribution of layers in Stable Diffusion is symmetric

Adding Balance Integer

Unbalance in low-bit (e.g., 2 bits) quantization

Adding Balance Integer

Scaling Factor Initialization via Alternating Optimization

Drawback: Large quantization error in low-bit (e.g., 2 bits) quantization

Scaling Factor Initialization via Alternating Optimization

Minimize Initial Quantization Error By Updating Scaling Factor

Drawback: Large quantization error in low-bit (e.g., 2 bits) quantization

Two-stage Training Pipeline

Loss Function

CFG-aware Quantization Distillation

Loss Function

CFG-aware Quantization Distillation

Loss Function

CFG-aware Quantization Distillation

Stage-I Training Loss Function

Feature Distillation

Loss Function

Overall Distillation

Stage-I Training Quantization Error-aware Time Step Sampling

Motivation: Different Quantization Error at Different Time Steps

Quantization error of predicted latent features between quantized model and FP model

Observation: the quantization error keeps increasing as the time steps approach $t = 999$.

Solution: Sample more time steps exhibiting the larger quantization errors near t = 999 by Beta distribution.

Stage-I Training Loss Function

Overall Distillation

Fine-tuning with Noise Prediction

Stage-II Loss

Generated Images

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

Quantitative performance

CLIP Score on 30K MS-COCO. TIFA Scores TIFA Scores CLIP Scores GenEval Scores

Ours-I: Stage-I training Ours-II: Stage-II training

BitsFusion consistently outperforms Stable Diffusion v1.5

Human Evaluation

Given a prompt, which image has better aesthetics and image-text alignment?

User preference of generated images from PartiPrompts (P2)

Effect of each method

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

More comparisons

Sampler: PNDM Steps: 50 Seed: 1024

Stable Diffusion v1.5, 32 bits

Thank you