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Motivating question: Can strategic agents take advantage of these algorithms? 

A lot of times agents use famous learning algorithms to determine what action to take.



• Two player, repeated, normal form game played 
for time T.


• One player is called the learner and uses an 
algorithm throughout the game.


• Other player is called optimizer, knows the 
learner’s algorithm and tries to take advantage 
of that to maximize their own utility.


• Optimizer and learner have  and  actions 
from action spaces  and  and utility 
matrices ,  respectively.
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Against specific learning algorithms …


• In zero-sum games (where ), what should 
the optimizer do to maximize their own utility?


• In general-sum games (where ), is the 
best play for the optimizer efficiently computable?

A + B = 0

A + B ≠ 0

Setting

Questions we address

Game G = 
(A,B)

Submit x(t)

Submit y(t)

Receive x(t)⊤By(t)

Receive x(t)⊤Ay(t)



Maximizing utility in zero-sum games

Optimizer strategy: any 


Learner strategy: 


, where:





a.k.a. replicator dynamics, the continuous time analog  
of MWU.

x : [0,T ] → Δ(𝒜)

y : [0,T ] → Δ(ℬ)

yi(t) =
exp(η ∫ t

0
x(s)⊤Beids)

∑m
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Maximizing utility in zero-sum games
Continuous time setting

Theorem 1: The rewards of the optimizer 
depend only on the total time played 
each action.

Corollary 1: Optimal rewards can be 
achieved by a constant strategy i.e. 


 


Moreover, this strategy can be 
efficiently computed in polynomial 
time.

x(t) = x*, x* ∈ Δ(𝒜), ∀t ∈ [0,T]
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Optimizer strategy: any 


Learner strategy: 


, where:





a.k.a. MWU or Hedge.

x : {1,…, T} → Δ(𝒜)

y : {1,…, T} → Δ(ℬ)

yi(t) =
exp(η∑t−1

s=1 x(s)⊤Bei)

∑m
i=1 exp(η∑t−1
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Theorem 2: The following are true:


1. 


2. There are classes of games for which 



Rcont(A, − A, T) ≤ Rdisc(A, − A, T) ≤ Rcont(A, − A, T) +
ηT
2

Rdisc(A, − A, T) = Rcont(A, − A, T) + Ω(ηT)

: optimal rewards for the 
optimizer in the continuous game.


: optimal rewards for the 
optimizer in the discrete game.

Rcont(A, B, T)

Rdisc(A, B, T)



Computational Barrier in general-sum games
Learner is purely best responding to the history:





a.k.a. fictitious play or MWU with .


y(t) = arg maxy∈Δ(ℬ)

t−1

∑
s=1

x(s)⊤By

η → ∞
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OCDP instance defined by :


•  matrices and  number of actions for learner 
and optimizer respectively.


•  total rounds of the game.


Instance is ‘YES’ if the optimizer can achieve total reward 
more than  and ‘NO’ otherwise.

y(t) = arg maxy∈Δ(ℬ)

t−1

∑
s=1

x(s)⊤By

η → ∞

(A, B, n, m, k, T )

A, B n, m

T

k



Computational Barrier in general-sum games
Theorem 2: OCDP is NP hard.

Proof sketch: Reduction from Hamiltonian Cycle.

Hamiltonian Cycle instance OCDP instance
T = k = |V | + 1

G = (V, E)



Summary
In short, our results:


1. In zero sum games, we show exactly how the 
optimizer should play against a MWU learner.


2. In general sum games, we provide the first 
known computational lower bound for 
computing optimal strategies against a best 
responding learner.
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Thank you!


