Diversity Is Not All You Need: Training A Robust Cooperative Agent Needs Specialist Partners

VISTEC SDU4 IT

Rujikorn Charakorn, Poramate Manoonpong, Nat Dilokthanakul

Cross-play minimization (XP-min) generates diverse agents

$$\max_{\boldsymbol{\pi}_A} J_{\texttt{XP-min}}(\boldsymbol{\pi}_A, \mathcal{P}) = J_{\texttt{SP}}(\boldsymbol{\pi}_A) - \lambda_{\texttt{XP}} J_{\texttt{XP}}(\boldsymbol{\pi}_A, \boldsymbol{\pi}_+) \; ; \; \forall \boldsymbol{\pi}_A \in \mathcal{P},$$

$$\boldsymbol{\pi}_+ = \operatorname*{argmax}_{\boldsymbol{\pi}_+ \in (\mathcal{P} \setminus \{\boldsymbol{\pi}_A\})} J_{\texttt{XP}}(\boldsymbol{\pi}_A, \boldsymbol{\pi}_+),$$

Mix-play regularization (MP-reg) reduces overfitness of XP-min agents but agents might lose specialization

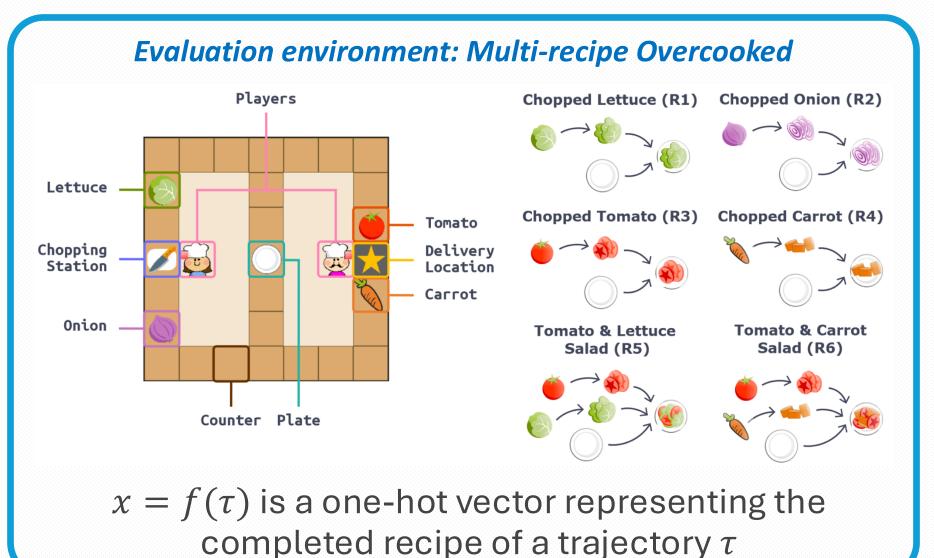
$$\max_{\boldsymbol{\pi}_{A}} J_{\text{MP-reg}}(\boldsymbol{\pi}_{A}, \mathcal{P}) = \overbrace{J_{\text{SP}}(\boldsymbol{\pi}_{A})}^{\text{High SP return}} - \lambda_{\text{XP}} J_{\text{XP}}(\boldsymbol{\pi}_{A}, \boldsymbol{\pi}_{+})}^{\text{Low XP return}} + J_{\text{MP}}(\boldsymbol{\pi}_{A}, \boldsymbol{\pi}_{+}) \; ; \; \forall \boldsymbol{\pi}_{A} \in \mathcal{P},$$

Core result #1:

Three measures representing a population's quality

 $x = f(\tau)$ is a characteristic of a trajectory τ given a characteristic function f

$$\mathbf{\mathcal{D}}(\mathcal{P}) := H(X) = -\sum_x P(x) \log P(x) = -\sum_x \mathbb{E}_{\boldsymbol{\pi}}[P(x|\boldsymbol{\pi})] \log \left(\mathbb{E}_{\boldsymbol{\pi}}[P(x|\boldsymbol{\pi})]\right),$$


Entropy of the trajectory characteristic of an entire population

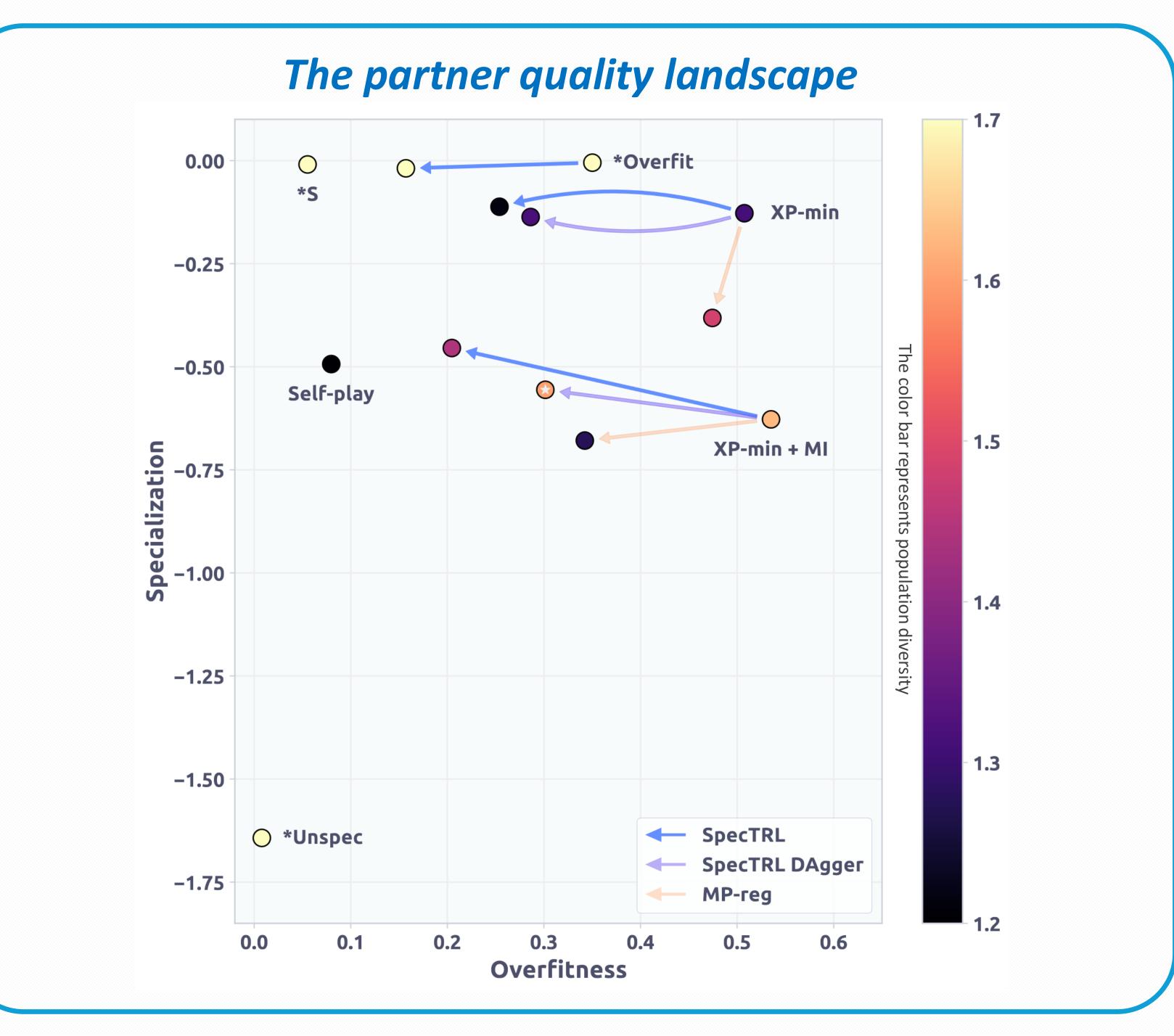
Specialization
$$\mathcal{S}(\mathcal{P}):=-\mathbb{E}_{\boldsymbol{\pi}}\ [H(X\mid \boldsymbol{\Pi}=\boldsymbol{\pi})]=-H(X\mid \boldsymbol{\Pi}),$$

$$H(X\mid \boldsymbol{\Pi}=\boldsymbol{\pi})=-\sum_{\boldsymbol{\pi}}P(x|\boldsymbol{\pi})\log P(x|\boldsymbol{\pi})$$

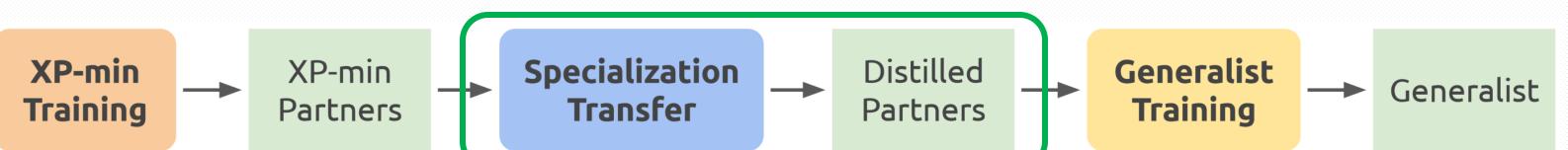
Negative expected entropy of the characteristic of each joint policy

Overfitness
$$\mathcal{O}(\mathcal{P}) = 1 - R(\pi_G^*; \mathcal{P})$$

The compliment of expected success rate (R) of the joint policies in the population when matched with an oracle generalist (OG)



Core result #2: Unspecialized or overfit partners induce less robust generalist agents


Populations	$\mathcal{oldsymbol{\mathcal{D}}}(\mathcal{P})$	$\mathcal{S}(\mathcal{P})$	$\mathcal{O}(\mathcal{P})$	$\mathcal{oldsymbol{\mathcal{R}}}(\pi_G, \mathcal{P}_{ ext{test}})$
$(\bullet) \mathcal{P}_S^*$ $(\bullet) \mathcal{P}_{\text{unspec}}^*$ $(\bullet) \mathcal{P}_{\text{overfit}}^*$	1.79 1.72 1.79	-0.01 -1.64 -0.01	0.06 0.01 0.35	$egin{array}{l} {f 0.81} \pm 0.05 \ 0.49 \pm 0.07 \ 0.73 \pm 0.01 \end{array}$
(●) <i>P</i> _{XP-min}	1.31	-0.12	0.51	0.49 ± 0.02

We show that partners' specialization, in addition to diversity, is crucial for training a robust cooperative agent.

SpecTRL reduces overfitness of XP-min partners that already have good diversity and specialization

Proposed method: Specialization Transfer

SpecTRL: Specialization transfer with reinforcement learning

$$J_{ extsf{SpecTRL}}(oldsymbol{\pi}_{A'}) = \sum_{i=1}^{i=N} J(\pi_{A'}^i, oldsymbol{\pi}_A^{-i})$$

distilling via the reward maximization objective incentivizes the distilled partners to "nudge" the source partners to perform cooperative behaviors

SpecTRL DAgger: Adding DAgger to SpecTRL

$$J_{\text{SpecTRL DAgger}}(\boldsymbol{\pi}_{A'}) = \sum_{i=1}^{i=N} J(\pi_{A'}^i, \boldsymbol{\pi}_A^{-i}) + \lambda_{\text{DAgger}} \mathcal{L}_{\text{DAgger}}(\pi_{A'}^i),$$

$$\mathcal{L}_{\text{DAgger}}(\pi_{A'}^i) = -\mathbb{E}_{\tau_t^i \sim \rho(\pi_{A'}^i, \boldsymbol{\pi}_A^{-i})} \log \pi_{A'}^i(\hat{a}_t^i | \tau_t^i),$$

Useful for stabilizing the distillation process by directly transferring the knowledge from the source policy

Core result #3: SpecTRL removes overfitness

Populations	$\mathcal{D}(\mathcal{P})\uparrow$	$\mathcal{S}(\mathcal{P})\uparrow$	$\mathcal{O}(\mathcal{P})\downarrow$	$\mathcal{R}(\pi_G, \mathcal{P}_{ ext{test}}) \uparrow$
*S *Overfit *Unspec	$1.79 \\ 1.78 \\ 1.72$	$-0.01 \\ 0.00 \\ -1.64$	$0.06 \\ 0.35 \\ 0.01$	0.82 ± 0.05 0.74 ± 0.02 0.49 ± 0.08
[*Overfit] + SpecTRL	1.79 (≈)	-0.01 (\approx)	$0.16 \ (\Downarrow 0.19)$	$0.78 \pm 0.01 \ (\uparrow 0.04)$

Core result #4: SpecTRL DAgger removes overfitness while maintaining diversity when applied to XP-min population

63 ± 0.03 \uparrow 0.32)	-0.63 ± 0.12 (ψ 0.50)	0.54 ± 0.06 (\approx)	0.61 ± 0.02 (\approx)
		• •	
	-0.45 ± 0.06 (\uparrow 0.18)	$0.20 \pm 0.06 \ (\Downarrow 0.34)$	$0.62 \pm 0.01 \\ (\approx)$
60 ± 0.02 (\approx)	-0.56 ± 0.08 (\approx)	$0.30 \pm 0.03 \ (\Downarrow 0.24)$	$0.64 \pm 0.01 \ (\uparrow 0.03)$
	ψ 0.19) 60 ± 0.02	$(\uparrow 0.19)$ $(\uparrow 0.18)$ 60 ± 0.02 -0.56 ± 0.08	$(\uparrow 0.18)$ $(\downarrow 0.34)$ $(\downarrow 0.34)$ $(\downarrow 0.02)$ $(\downarrow 0.08)$ $(\downarrow 0.34)$