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Background

§ Visual-Language Model (VLM) serve as foundation models for various downstream tasks

§ Zero-shot Classification
§ Text-to-Image Retrieval
§ Image Captioning
§ Text-to-Image Generation

§ However, VLMs often skewing the model outputs in ways that reflect societal stereotypes such 
as gender or racial biases in assigning professions or describing scenarios.

Versability of Visual-Language Model
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Background

§ Predicted class is determined by the highest cosine similarity between image and text 
embeddings.

Bias in Zero-shot Classification
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Background

§ Images in the query set are retrieved by sorting them according to the cosine similarity

Bias in Text-to-Image Retrieval
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Background

§ Image captioning model may produce wrong gender in caption.

Bias in Image Captioning
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CLIP-CAP
A man riding skis down a snow covered slope.

CLIP-CAP
A woman in a wetsuit surfing on a wave.



Background

§ Text-to-Image generation model could be biased by sampling preferring certain gender 
for a profession.

Bias in Text-to-Image Generation
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Prompt: “a photo a person who works as a nurse.” Prompt: “a photo a person who works as a plumber.”



Background

§ Even though we specify the gender, there’s still a bias.

Bias in Text-to-Image Generation
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Prompt: “a photo a man who works as a nurse.” Prompt: “a photo a woman who works as a builder.”



Motivation

§ Debiasing method often can deal with only a specific downstream tasks, 
and cannot be applied to others. (Task-Specific)
⟹ Needs for a unified debiasing strategy for various types of VLM and tasks. 

(Task-Agnostic)

§ Moreover, re-training the entire foundational model / VLMs is computationally 
expensive.
⟹ Needs for a cost-efficient debiasing approach.

Needs for A Unified and Efficient Debiasing Strategy
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Motivation

§ Zero-shot Classification & 
Text-to-Image retrieval

A Unified Debiasing Strategy – Debiasing Embedding
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Proposed Method
Selective Feature Imputation for Debiasing (SFID)
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Proposed Method
Selective Feature Imputation for Debiasing (SFID)
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Proposed Method
Selective Feature Imputation for Debiasing (SFID)
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Proposed Method
Selective Feature Imputation for Debiasing (SFID)
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Proposed Method
Selective Feature Imputation for Debiasing (SFID)
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Result
Selective Feature Imputation for Debiasing (SFID)
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§ Effective in debiasing.
§ Can be used any types of tasks.
§ Not requiring training a model.
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