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Mode Collapse and Speech Enhancement

Speech Enhancement aims to restore noisy or degraded sound into the clean one

Common probabilistic formulation: 

Learn a distribution of clean signals given a noisy one.

𝑦 ~ 𝑝𝑐𝑙𝑒𝑎𝑛 𝑦 𝑥 , 𝑥 – noisy signal, 𝑦 – clean signal
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𝑦 ~ 𝑝𝑐𝑙𝑒𝑎𝑛 𝑦 𝑥 , 𝑥 – noisy signal, 𝑦 – clean signal

Proposed probabilistic formulation: 

Learn the most likely clean signal given a noisy one.

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑝𝑐𝑙𝑒𝑎𝑛(𝑦|𝑥), 𝑥 – noisy signal, 𝑦 – clean signal



We show that GANs are a natural choice for predicting the main mode of the 

conditional clean speech distribution 𝑝𝑐𝑙𝑒𝑎𝑛 𝑦 𝑥

However, adversarial training is unstable, therefore, auxiliary regression 

losses are needed to push generator close to the desirable solution.

Mode Collapse and Speech Enhancement



Practical Aspects: an issue with regression losses
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Original audio

Audio, reconstructed with HiFi-GAN vocoder



Practical Aspects: rules for an ideal regression loss

1. Clustering rule: same speech sounds should be closer to each other, 

while different speech sounds should be separated.

2. SNR rule: the higher the noise level on the noisy signal, the further it 

should be from its clean version.



Practical Aspects: choice of the mapping φ
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Training in 3 stages

1. Training in 16kHz without Upsample WaveUNet and with regression losses 

only.
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Training in 3 stages

1. Training in 16kHz without Upsample WaveUNet and with regression losses 

only.

2. Adversarial training in 16 kHz without Upsample WaveUNet with GAN loss 

and features matching loss.

3. Adversarial Training with Upsample WaveUNet in 48 kHz using all previous 

losses and also Human Feedback losses.



Evaluations and Results
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For more in formation, please, visit our demo.

https://samsunglabs.github.io/FINALLY-page
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