

Schrödinger Bridge Flow for Unpaired Data Translation

Valentin De Bortoli*, Ira Korshunova*, Andriy Mnih, Arnaud Doucet

Introduction

- Rectified flows [1] and Schrödinger Bridges [2] are extensions of diffusion (and flow matching models) for unpaired data translation.
- Existing algorithms involve costly **iterative procedures**. Can we do better?

Efficient finetuning for unpaired data

- Problem 1: ALIGNMENT VS QUALITY
 - More reflows = better alignment, worse quality
 - Improvement: forward/backward training with half-batches

\mathbf{Method}	$\mathrm{NFE}(\downarrow)$	FID (\downarrow)		.)
Euler solver				
1-Rectified Flow (+Distill)	1	$\begin{array}{c} 378 \ (6.18) \\ 12.21 \ (4.85) \\ 8.15 \ (5.21) \end{array}$		
2-Rectified Flow (+Distill)	1			
3-Rectified Flow (+Distill)	1			
Runge-Kutta (RK45)		_		
1-Rectified Flow	127		2.58	
2-Rectified Flow	110		3.36	
3-Rectified Flow	104		3.96	

Generative modeling results from [1]

Problem 2: INTRICATE ITERATIVE IMPLEMENTATION

- Reflow iterations [1,2] require storing samples, choosing the storage size and number of reflow steps
- Improvement: online finetuning

Reflowing and retraining

- Given data distributions π_0 and π_1
 - Find **optimal coupling**
 - "How to go from π_0 to π_1 optimally?"

 $\mathbf{X}_t = (1-t)\mathbf{X}_0 + t\mathbf{X}_1 + \sigma\sqrt{t(1-t)\mathbf{Z}}$

• Rectified flow (Schrödinger Bridge = stochastic version)

• The **reflow step** (retraining using the data coupline from the trained model (!))

- Problem 3: STOCHASTICITY AND NETWORKS
 - Generative modeling = better **without** stochasticity (σ = 0)
 - Transfer tasks = better **with** stochasticity
 - Stochastic approaches, e.g. DSBM[2], require two networks (forward and backward)
 - Improvement: joint architecture

 $\hat{\mathbb{P}}^0 = (\pi_0 \otimes \pi_1) \mathbb{Q}_{|0,1},$

$$\mathcal{L}_{\text{fwd}} = E[\|v_{\theta}(s=1,t,\mathbf{X}_{t}) - (\mathbf{X}_{1} - \mathbf{X}_{0} - \sigma\sqrt{t/(1-t)}\mathbf{Z})\|^{2}]$$

$$\mathcal{L}_{\text{bwd}} = E[\|v_{\theta}(s=0,t,\mathbf{X}_{t}) - (\mathbf{X}_{0} - \mathbf{X}_{1} - \sigma\sqrt{(1-t)/t}\mathbf{Z})\|^{2}]$$

Algorithm 1 α -Diffusion Schrödinger Bridge Matching

Theoretical res	ults	1: Input: datasets π_0 and π_1 , entropic regularisation ε , number of pretraining and finetuning $N_{\text{pretraining}}$ and $N_{\text{finetuning}}$, batch size B and half batch size $b = B/2$, EMA decay γ , is parameters θ and initial EMA perameters $\theta \in [0, 1]$	steps initial
\mathcal{M} \mathcal{P}^{0} \mathbb{P}^{1}	Our online procedure is a discretisation of a flow of path measures	parameters θ and initial EMA parameters $\theta^{\text{EMA}} = \theta$, $\alpha \in (0, 1]$ 2: for $n \in \{1, \dots, N_{\text{pretraining}}\}$ do 3: Sample $(\mathbf{X}_0, \mathbf{X}_1) \sim (\pi_0 \otimes \pi_1)^{\otimes B}$ 4: Sample $t \sim \text{Unif}([0, 1])^{\otimes B}$ and $\mathbf{Z} \sim \mathcal{N}(0, \text{Id})^{\otimes B}$ and compute $\mathbf{X}_t = \text{Interp}_t(\mathbf{X}_0, \mathbf{X}_1, \mathbf{X}_1)$ 5: Update θ with a gradient step on $\frac{1}{2} \left[\ell^{\Rightarrow} \left(t^{1:b}, \mathbf{X}_1^{1:b}, \mathbf{X}_1^{1:b} \right) + \ell^{\leftarrow} \left(t^{b+1:B}, \mathbf{X}_0^{b+1:B}, \mathbf{X}_t^{b+1:B} \right)$ 6: Update EMA parameters: $\theta^{\text{EMA}} = \gamma \theta^{\text{EMA}} + (1 - \gamma)\theta$ 7: end for 8: for $n \in \{1, \dots, N_{\text{finetuning}}\}$ do 9: Sample $(\mathbf{X}_0, \mathbf{X}_1) \sim (\pi_0 \otimes \pi_1)^{\otimes b}$	Z)
$\stackrel{\mathbb{P}^{2}}{\stackrel{1}{\not \mathbb{P}^{2}}} \stackrel{\hat{\mathbb{P}^{1}}}{\stackrel{\hat{\mathbb{P}^{0}}}{\stackrel{1}{\not \mathbb{P}^{0}}} \rightarrow \mathcal{R}(\mathbb{Q})$	We call it the Schrödinger ₁ Bridge flow 1 1 1	Sample (126, 121) ($n_0 \in n_1$) Sample ($\hat{\mathbf{X}}_1$ solving forward SDE (11)-(fwd) with $v_{\theta^{\text{EMA}}}(1, \cdot)$ or $v_{\theta}(1, \cdot)$ starting from X Sample $\hat{\mathbf{X}}_0$ solving backward SDE (11)-(bwd) with $v_{\theta^{\text{EMA}}}(0, \cdot)$ or $v_{\theta}(0, \cdot)$ starting from Sample $t^{\diamond} \sim \text{Unif}([0, 1])^{\otimes b}$ and $\mathbf{Z}^{\diamond} \sim \mathcal{N}(0, \text{Id})^{\otimes b}$ and compute $\mathbf{X}_t^{\diamond} = \text{Interp}_{t^{\diamond}}(\hat{\mathbf{X}}_0, \mathbf{X}_1)$ Sample $t^{\epsilon} \sim \text{Unif}([0, 1])^{\otimes b}$ and $\mathbf{Z}^{\epsilon} \sim \mathcal{N}(0, \text{Id})^{\otimes b}$ and compute $\mathbf{X}_t^{\epsilon} = \text{Interp}_{t^{\epsilon}}(\mathbf{X}_0, \hat{\mathbf{X}}_1)$ Update θ with a gradient step on $\frac{1}{2} [\ell^{\diamond}(t^{\diamond}, \mathbf{X}_1, \mathbf{X}_t^{\diamond}) + \ell^{\epsilon}(t^{\epsilon}, \mathbf{X}_0, \mathbf{X}_t^{\epsilon})]$ and stepsize α Update EMA parameters: $\theta^{\text{EMA}} = \gamma \theta^{\text{EMA}} + (1 - \gamma)\theta$	\mathbf{X}_{1}^{0} $, \mathbf{Z}^{\flat})$ $, \mathbf{Z}^{\leftarrow})$

Experiments

• Toy experiments

• MNIST \leftrightarrow EMNIST

Finetuned model Base model esBAba ebBAba inputs esBAba $\sigma = 0.0 \quad \cancel{2} \quad \cancel{3} \quad \cancel{3} \quad \cancel{2} \quad \cancel{3} \quad \cancel{3}$ e h 3 H b a $\sigma = 0.1$ \bigcirc \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 215662 218637 $\sigma = 0.4$ 215167 219530 218167 257027 761892 761597

For the transport to work well, σ needs to be chosen carefully:

- σ too small \rightarrow bad quality of the base model, and finetuning leads to a degenerate solution.
- σ too large \rightarrow outputs become independent of the inputs, thus finetuning cannot improve upon the base model.

16: end for 17: **Output:** $(\theta, \theta^{\text{EMA}})$ parameters of the finetuned model

- Stage 1: pretraining • Classical (stochastic) **flow matching**
- **Stage 2: finetuning**
- Refinement on learned trajectories
- **Optima transport**
- Gaussian example $_{\bigcirc} \ \pi_0 = \mathrm{N}(\mu_0, \sigma_0^2) \ \pi_1 = \mathrm{N}(\mu_0, \sigma_0^2)$

• Advantage of online

• Reflow oscillates

- Schrödinger Bridge is Gaussian
- $\circ ~~\sigma_{\star}^2 = (1/2)[(4\sigma_0^4 + \sigma^4)^{1/2} \sigma^2]$

• Reflow converges slowly

What's next?

- Extension to larger datasets
 - Multimodality
 - Latent representation (same dimension)

• AFHQ: cat \leftrightarrow wild

AFHQ (conditional): cat \leftrightarrow wild \leftrightarrow dog

Audio <-> Image <-> ???

• Applications in science • Downscaling in **climate science**

[1] Flow Straight and Fast, Liu et al. (2022) [2] Diffusion Schrödinger Bridge Matching, Shi et al. (2023)