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Adversarial samples are a serious risk to neural networks [Szegedy+ ICLR14].
Why can adversarial samples fool networks? 
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Hypothesis: perturbations contain class-specific features [Ilyas+ NeurIPS19].
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Empirical evidence: classifiers learning on mislabeled 
adversarial samples can generalize to clean samples [Ilyas+ NeurIPS19].
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However, theoretical evidence and understanding are limited.

An adversarial perturbation can be represented as
the weighted sum of clean samples.  
Network predictions are consistent when learning on 
correctly labeled clean samples and mislabeled adversarial samples.
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Framework (Lazy training) If network width is sufficiently large, 𝑚 > #𝒪(𝑑!(𝑇" + 𝑇#)!),
most hidden neurons satisfy 𝜙$ 𝒘% 𝑡 , 𝒛 + 𝑏% 𝑡 = 𝜙$ 𝒘% 0 , 𝒛 + 𝑏% 0 .
𝜙/ : Differential of ReLU During training At initialization

Perturbation = the weighted sum of clean samples
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Predictions are consistent between standard and perturbation learning

Theorem.
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If the following conditions hold, then sgn(𝑓 𝒛 ) = sgn(𝑔 𝒛 ).
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Counterintuitive generalization

What is property of perturbation learning?
How do adversarial perturbations contain class-specific features?
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We can directly follow the dynamics of network prediction during training.
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Prediction matching
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