An Adaptive Approach for Infinitely Many-armed Bandits under Generalized Rotting Constraints

Introduction

We consider a fundamental sequential learning problem in which an agent must play one arm at a time from an infinite set of arms with *rotting rewards*, where the mean reward of a selected arm may decrease at each play of the arm.

Applications.

- Content recommendation systems where click rates of items may decrease because of user boredom when watching the same content.
- Clinical trials in which the efficacy of a medicine may decrease due to drug tolerance when a patient takes the same medicine several times.

Problem Statement

- There are infinitely many arms in \mathcal{A} .
- The stochastic reward gained by pulling arm a_t at time t is defined as

$$r_t = \mu_t(a_t) + \eta_t.$$

- The initial mean rewards $\{\mu_1(a) \in [0,1]\}_{a \in \mathcal{A}}$ are i.i.d. rv following $\mathbb{P}(\mu_1(a) > 1 - x) = \mathbb{P}(\Delta_1(a) < x) = \Theta(x^\beta).$
- At each time t, the mean rewards of pulled arm a_t is updated as

$$\mu_{t+1}(a_t) = \mu_t(a_t) - \rho_t.$$

Jung-hun Kim¹, Milan Vojnović², Se-Young Yun³ ¹Seoul National University, ²London School of Economics, ³KAIST

The values of rotting rates of pulled arms, $\{\rho_t\}_{t\in[T-1]}$, are assumed to be determined by an adversary. We consider two cases for rotting rates:

• Slow rotting case: for given $V_T \ge 0$, $\sum_{t=1}^{T-1} \rho_t \le V_T$. • Abrupt rotting case: for given $S_T \in [T], 1 + \sum_{t=1}^{T-1} \mathbb{1}(\rho_t \neq 0) \leq S_T.$ The objective is to find a policy that minimizes the following expected cumulative regret

$$\mathbb{E}[R^{\pi}(T)] = \mathbb{E}\left[\sum_{t=1}^{T} (1 - t)\right]$$

Algorithm

We propose an algorithm, referred to as UCB-Threshold with Adaptive Sliding Window. Here we explain how the algorithm works.

- The algorithm first selects an arbitrary new arm $a \in \mathcal{A}$.
- Then for window-UCB index of the algorithm, we define $WUCB(a, t_1, t_2, T) = \widehat{\mu}_{[t_1, t_2]}(a) + \sqrt{\frac{1}{2}}$
- Then the algorithm pulls the arm consecutively until the following threshold condition is satisfied:

$$\min_{s \in \mathcal{T}_t(a)} WUCB(a, s, t-1,$$

- Here we omit the details for the abrupt rotting (S_T) .

Regret Analysis

We provide the theoretical results as follows.

Type	$\begin{array}{c} \text{Regret upper b} \\ \text{for } \beta \geq 1 \end{array}$
V_T	$\int \widetilde{O}\bigg(\max\left\{V_T^{\frac{1}{\beta+2}}T^{\frac{\beta+2}{\beta+2}}\right\}$
S_T	$\widetilde{O}\Big(\max\Big\{S_T^{\frac{1}{\beta+1}}T^{\frac{\beta}{\beta-1}}\Big\}$

Type	Reg
V_T	$\Omega\Big(\max\cdot\Big)$
S_T	$\Omega(\max$

Experiments

 $+\mu_t(a_t))$ |

$$\sqrt{12\log(T)/n_{[t_1,t_2]}(a)}$$

 $,T) < 1-\delta.$

• For slow rotting (V_T) , we set $\delta = \delta_V(\beta) = \max\{(V_T/T)^{1/(\beta+2)}, 1/T^{1/(\beta+1)}\}$ when $\beta \ge 1$ and $\delta_V(\beta) = \max\{(V_T/T)^{1/3}, 1/\sqrt{T}\}$ when $0 < \beta < 1$.

