Unlocking the Generative Capabilities of Masked Generative Models for Image Synthesis via Self-Guidance

Jiwan Hur¹, Dong-Jae Lee¹, Gyojin Han¹, Jaehyun Choi¹, Yunho Jeon^{2†}, and Junmo Kim^{1†}

¹ KAIST, South Korea

² Hanbat National University, South Korea

ROCESSING SYSTEMS

Masked Generative Models

- Masked Generative Models (MGMs) are a family of discrete diffusion models, which aim to generate discrete data by predicting masked regions.
- Recently, vector-quantized (VQ) token-based MGMs have shown impressive performance.

Masked Generative Models

- VQ token-based MGMs have shown efficient generative capabilities compared to diffusion models. (~18 steps).
- However, MGMs underperform well-improved continuous diffusion models such as LDM.

Improved Sampling Strategies of MGMs

Two approaches exist to improve the sample quality of MGMs.

1. Low temperature sampling (τ)

- Restrict stochasticity of sampling procedure. (quality \uparrow , diversity \downarrow)
- However, very low temperature harm the quality of samples due to the *multi-modality problem*.

2. Predictor-Corrector sampling (Token-Critic, DPC)

- Discern unrealistic tokens via external model.
- Requires high training cost and more sampling steps.
- Diffusion models utilize various **guidance** techniques to improve the sample quality while sacrificing diversity.

Define **Generalized guidance formulation** for discrete diffusion models from the optimization perspective:

$$\arg\max_{\phi} [\log p(\mathcal{H}_{\phi}(\boldsymbol{x}_{t})) + (1+s)(\log p(\boldsymbol{x}_{t}) - \log p(\mathcal{H}_{\phi}(\boldsymbol{x}_{t})))]$$

- \mathcal{H}_{ϕ} is information bottleneck that removes salient information h_t from x_t .
- h_t can be either internal or external information of x_t .
- It guides the sampling process toward enhancing specific information h_t .
- When $h_t = c$, it collapses to discrete classifier-free guidance (CFG) proposed in Improved VQ Diffusion.

Intuition for Self-Guidance

Since we aim to improve the sample quality, we define h_t as fine scale details within x_t .

Intuition for Semantic Smoothing

- How to generate coarse information from VQ tokens?
 - \rightarrow We aim to apply smoothing on VQ tokens x_t .
 - Continuous pixel space: Spatial Smoothing (e.g. Blur)
 - Semantic discrete space (VQ token): Semantic Smoothing

Intuition for Auxiliary Task

- We propose error token correction as an auxiliary task to generate semantically smoothed output of x_t .
- Error tokens often act as a semantic outlier.
- To correct the error tokens, model implicitly learns to generate semantically smoothed output to minimize the empirical risk for all data points.

Method

- We leverage pre-trained MGMs to utilize the generative priors.
- We adopt TOAST [1] for parameter-efficient fine-tuning (PEFT) method.

Guided Sampling with High Temperature

- High sampling temperature (τ) generally increase diversity while sacrificing the quality.
- Sampling with high temperature and self-guidance to enhance both the quality and diversity of generated samples.

Effect of Self-Guidance

• Spatial smoothing (Gaussian Blur) at pixel level vs Semantic smoothing at latent level

(a) Input & one-step prediction

Guide w/ spatial smoothing at pixel level Guide w/ semantic smoothing at latent level

Qualitative Results

 Comparison of sampled images using 18-step MaskGIT without (top) and with the proposed selfguidance (bottom).

Quantitative Results

- Comparison with various MGMs. All methods shares same baseline generator (MaskGIT) and same sampling timestep (T=18).
- The proposed method shows outperforming quality-diversity trade-off compared to various MGMs.

Quantitative Results

• Comparison with various generative models with similar model size.

			ImageNet 256×256				In	ImageNet 512×512			
Model	Туре	NFE	FID↓	IS↑	Prec↑	Rec↑	FID↓	IS↑	Prec↑	Rec↑	
BigGAN-deep [3]	GANs	1	6.95	224.5	0.89	0.38	8.43	177.9	0.85	0.25	
GigaGAN [22]	GANs	1	3.45	225.5	0.84	0.61	—	—	—	—	
ADM [9]	Diff.	250	10.94	101.0	0.69	0.63	23.24	58.0	0.73	0.60	
ADM (+ SAG) [19]	Diff.	500	9.41	104.7	0.70	0.62	_	_	_	_	
CDM [18]	Diff.	250	4.88	158.7	_	_	_	_	_	_	
LDM-4 [34]	Diff.	250	10.56	103.4	0.71	0.62	—	_	—	_	
LDM-4 (+ CFG) [34]	Diff.	500	3.60	247.7	—	_	—	_	—	—	
DiT-L/2 [‡] (+ CFG) [31]	Diff.	500	5.02	167.2	0.75	0.57	_	_	_	—	
VQVAE-2 [†] [33]	AR	5120	31.11	~ 45	0.36	0.57	_	_	_	_	
VQGAN [†] [10]	AR	~ 1024	18.65	80.4	0.78	0.26	7.32	66.8	0.73	0.31	
VQ-Diffusion [14]	Discrete.	100	11.89	_	_	_	_	_	_	_	
ImprovedVQ. (+ CFG) [40]	Discrete.	200	4.83	—	—	—	—	—	—	—	
MaskGIT [*] [4]	Mask.	18	6.56	203.6	0.79	0.48	8.48	167.1	0.78	0.46	
Token-Critic [25]	Mask.	36	4.69	174.5	0.76	0.53	6.80	182.1	0.73	0.50	
DPC-full [26]	Mask.	180	4.45	244.8	0.78	0.52	6.06	218.9	0.80	0.47	
Ours (T=12)	Mask.	24	3.35	259.7	0.81	0.52	5.38	226.0	0.88	0.36	
Ours (T=18)	Mask.	36	3.22	263.9	0.82	0.51	5.57	233.2	0.88	0.35	

Paper (Arxiv)

Thank you!

