

Wasserstein Distance Rivals Kullback-Leibler Divergence for Knowledge Distillation

Jiaming Lv^{*}, Haoyuan Yang^{*}, Peihua Li⁺ Dalian University of Technology

Jiaming Lv

Haoyuan Yang

Peihua Li

*Equal contribution. +Corresponding author.

Content

- Introduction
 - What is knowledge distillation?
 - Two downsides of KL-Div for knowledge distillation
- WD for Knowledge Transfer
 - Discrete WD for Logit Distillation
 - Continuous WD for Feature Distillation
- Experiments
 - Ablation
 - Comparison with SOTAs
- Conclusion

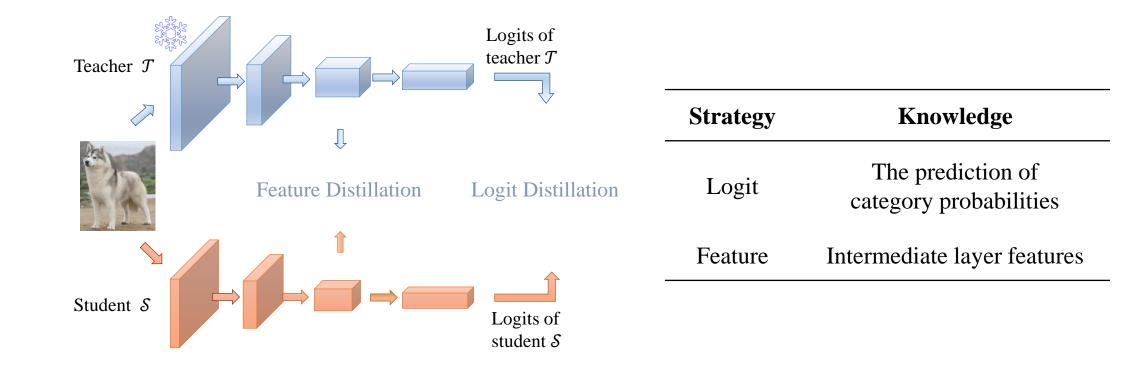
What is knowledge distillation?

Transfer knowledge from a high-performance teacher model with large capacity to a lightweight student model.



Two strategies in knowledge distillation:

- Logit Distillation
- Feature Distillation



KL Divergence (KL-Div) for knowledge distillation

Method	Dis-similarity
KD [1]	
DKD [2]	KL-Div
NKD [3]	KL-DIV
WTTM [4]	

➤ KL-Div has been predominant in logit distillation.

KL-Div is complementary to many methods that transfer knowledge from intermediate layers. [5, 6, 7]

[2] B. Zhao, Q. Cui, R. Song, Y. Qiu, J. Liang. Decoupled knowledge distillation. In CVPR, 2022.

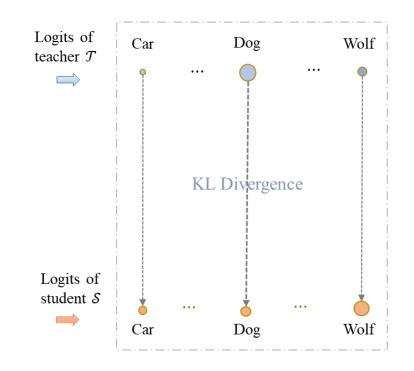
[3] Z. Yang, A. Zeng, C. Yuan, Y. Li. From knowledge distillation to self-knowledge distillation: A unified approach with normalized loss and customized soft labels. In ICCV, 2023.

[4] K. Zheng, E.-H. Yang. Knowledge distillation based on transformed teacher matching. In ICLR, 2024.

[5] L. Liu, Q. Huang, S. Lin, H. Xie, B. Wang, X. Chang, X. Liang. Exploring inter-channel correlation for diversity-preserved knowledge distillation. In ICCV, 2021.

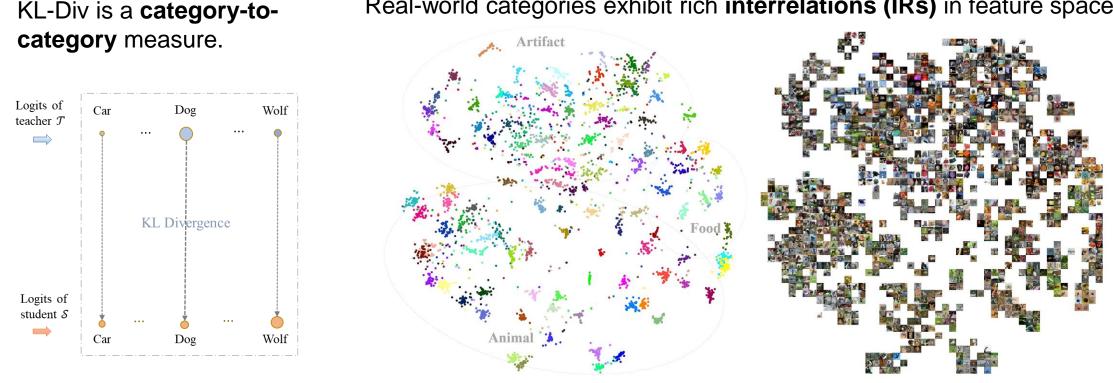
[6] M. Zong, Z. Qiu, X. Ma, K. Yang, C. Liu, J. Hou, S. Yi, W. Ouyang. Better teacher better student: Dynamic prior knowledge for knowledge distillation. In ICLR, 2023.

[7] D. Liu, M. Kan, S. Shan, X. Chen. Function-consistent feature distillation. In ICLR, 2023.



Two downsides of KL-Div for knowledge distillation

- > KL-Div lacks a mechanism to perform **cross-category** comparison.
- \succ KL-Div is problematic for distilling knowledge from intermediate layers.



Real-world categories exhibit rich **interrelations (IRs)** in feature space.

It is essential to **explicitly** leverage the relationships among categories.

Two downsides of KL-Div for knowledge distillation

> KL-Div lacks a mechanism to perform cross-category comparison.

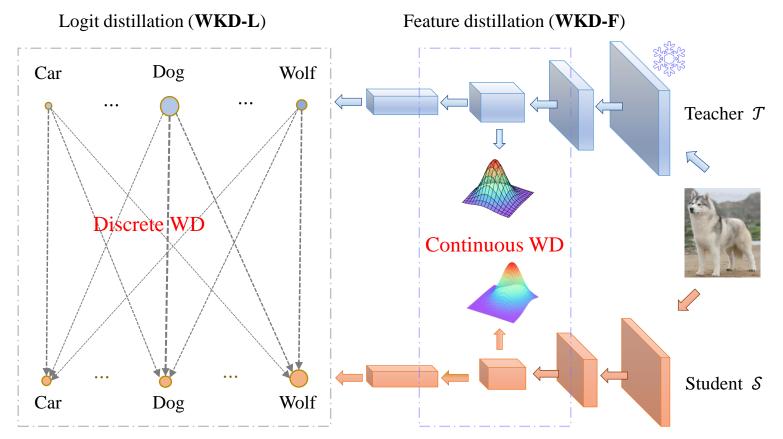
- KL-Div is problematic for distilling knowledge from intermediate layers.
- KL-Div struggles with high-dimensional features: deep features are sparsely in feature space [8]
 - Make non-parametric density estimation (e.g., histogram) that KL-Div requires infeasible due to the curse of dimensionality.
 - Lead to non-overlapping discrete distributions that KL-Div fails to deal with. [9]
- **KL-Div has limited ability for continuous distributions**: KL-Div is not a metric [10] and is unaware of **geometric structure** of the underlying manifold [11].

[8] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2009.
[9] M. Arjovsky, S. Chintala, L. Bottou. Wasserstein generative adversarial networks. In ICML, 2017.
[10] K. T. Abou-Moustafa, F. P. Ferrie. A note on metric properties for some divergence measures: The Gaussian case. In ACML, 2012.
[11] S. Ozair, C. Lynch, Y. Bengio, A. van den Oord, S. Levine, P. Sermanet. Wasserstein dependency measure for representation learning. In NeurIPS, 2019.

WD for Knowledge Transfer

WD (Wasserstein Distance) for Knowledge Transfer

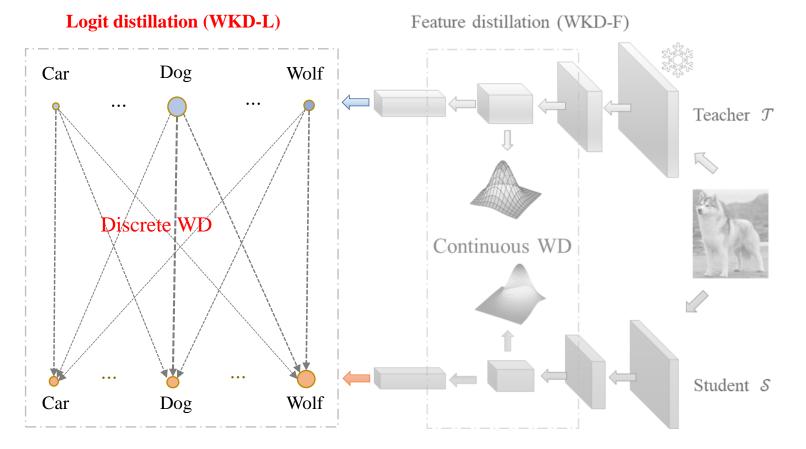
- Discrete WD for Logit distillation: WKD-L
 - Explicitly leverage interrelations among categories via cross-category comparison.
- Continuous WD for Feature distillation: WKD-F
 - Leverages geometric structure of the Riemannian space of Gaussians



WD for Knowledge Transfer

WD (Wasserstein Distance) for Knowledge Transfer

- Discrete WD for Logit distillation: WKD-L
 - Explicitly leverage interrelations among categories via cross-category comparison.
- Continuous WD for Feature distillation: WKD-F
 - Leverages geometric structure of the Riemannian space of Gaussians



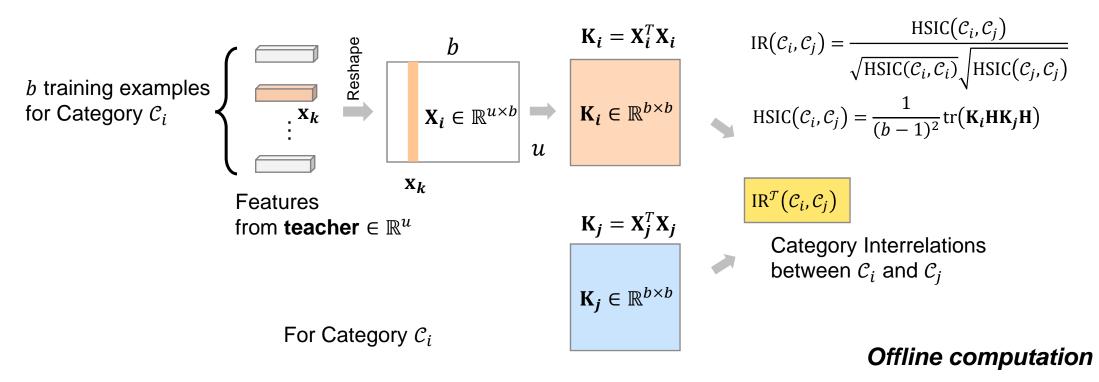
- Quantify category
 Interrelations (IRs)
- Discrete WD Loss

WD for Knowledge Transfer – Discrete WD

Discrete WD for Logit Distillation

- Interrelations (IRs) among categories
- Discrete WD Loss

Quantify category Interrelations (IRs) explicitly based on CKA [12]

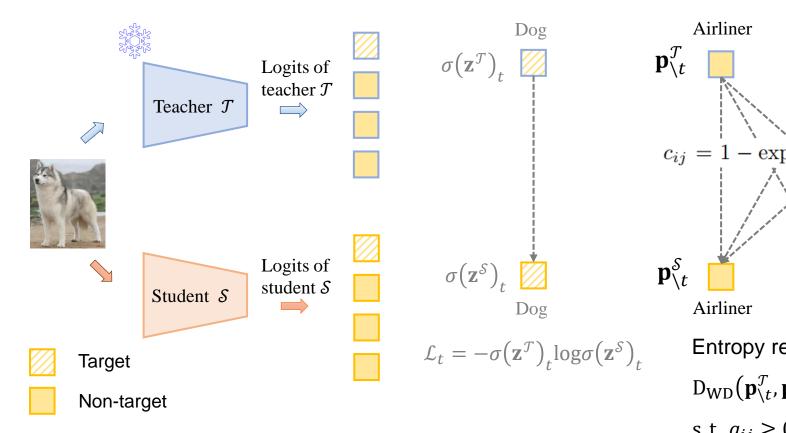


[12] C. Cortes, M. Mohri, A. Rostamizadeh. Algorithms for learning kernels based on centered alignment. JMLR, 2012.

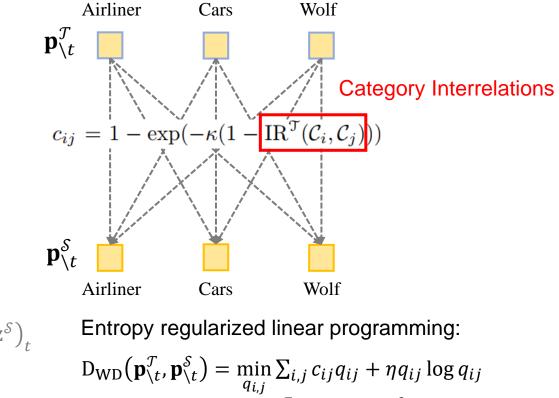
WD for Knowledge Transfer – Discrete WD

Discrete WD for Logit Distillation

- Interrelations (IRs) among categories
- Discrete WD Loss



$$\mathsf{Loss:} \ \mathcal{L}_{\mathrm{WKD-L}} \!=\! \lambda \mathrm{D}_{\mathrm{WD}}(\mathbf{p}_{\backslash t}^{\mathcal{T}},\!\mathbf{p}_{\backslash t}^{\mathcal{S}}) + \mathcal{L}_{\mathrm{t}}$$

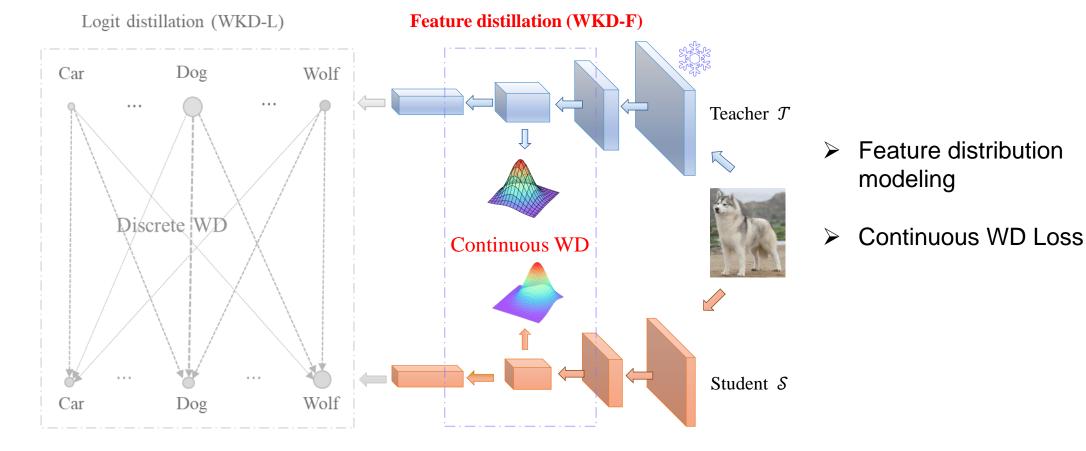


s.t. $q_{ij} \ge 0, \sum_i q_{ij} = p_i^T, \sum_i q_{ij} = p_j^S$, $i, j \in S_n$

WD for Knowledge Transfer

WD (Wasserstein Distance) for Knowledge Transfer

- Discrete WD for Logit distillation: WKD-L
 - Explicitly leverage interrelations among categories via cross-category comparison.
- Continuous WD for Feature distillation: WKD-F
 - Leverages geometric structure of the Riemannian space of Gaussians



WD for Knowledge Transfer – Continuous WD

Continuous WD for Feature Distillation

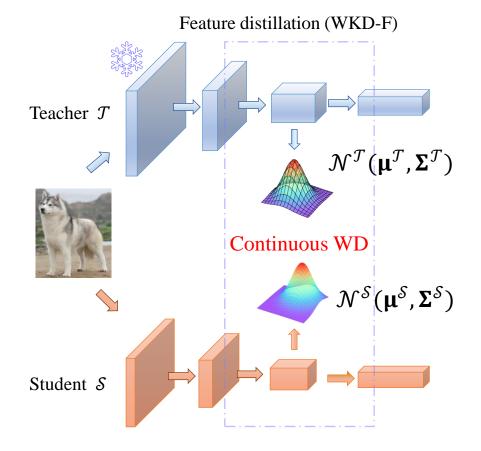
- Feature distribution modeling
- Continuous WD Loss



WD for Knowledge Transfer – Continuous WD

Continuous WD for Feature Distillation

- Feature distribution modeling
- Continuous WD Loss



Loss: The continuous WD between the two Gaussians

$$D_{WD}(\mathcal{N}^{\mathcal{T}},\mathcal{N}^{\mathcal{S}}) = \inf_{q} \int_{\mathbb{R}^{l}} \int_{\mathbb{R}^{l}} \|\mathbf{f}^{\mathcal{T}} - \mathbf{f}^{\mathcal{S}}\|^{2} q(\mathbf{f}^{\mathcal{T}},\mathbf{f}^{\mathcal{S}}) d\mathbf{f}^{\mathcal{T}} d\mathbf{f}^{\mathcal{S}},$$

Closed-form distance

$$\mathrm{D}_{\mathrm{WD}}(\mathcal{N}^{\mathfrak{T}}\!,\mathcal{N}^{\mathfrak{S}})=\mathrm{D}_{\mathrm{mean}}(\boldsymbol{\mu}^{\mathfrak{T}}\!,\boldsymbol{\mu}^{\mathfrak{S}})\!+\mathrm{D}_{\mathrm{cov}}(\boldsymbol{\Sigma}^{\mathfrak{T}}\!,\boldsymbol{\Sigma}^{\mathfrak{S}})$$

The diagonals of Σ

 $D_{\text{mean}}(\boldsymbol{\mu}^{\mathcal{T}},\boldsymbol{\mu}^{\mathcal{S}}) = \|\boldsymbol{\mu}^{\mathcal{T}} - \boldsymbol{\mu}^{\mathcal{S}}\|^{2} \quad D_{\text{cov}}(\boldsymbol{\Sigma}^{\mathcal{T}},\boldsymbol{\Sigma}^{\mathcal{S}}) = \|\boldsymbol{\delta}^{\mathcal{T}} - \boldsymbol{\delta}^{\mathcal{S}}\|^{2}$

Image Classification

Image classification on ImageNet

• Teacher and the student are CNNs.

			Logit					Feature				Logit + Feature							
Setting		T	S	KD 2	DKD	NKD 4	CTKD 54	WTTM	WKD-L (ours)	FitNet	CRD 25	Review -KD <mark>29</mark>	CAT	WKD-F (ours)	CRD+ KD <mark>25</mark>	DPK 7	FCFD	KD- Zero <mark>[56</mark>]	WKD-L+ WKD-F (ours)
RN34	Top-1	73.31	69.75	71.03	71.70	71.96	71.51	72.19	72.49	70.53	71.17	71.61	71.26	72.50	71.38	72.51	72.25	72.17	72.76
\rightarrow RN18	Top-5	91.42	89.07	90.05	90.41	-	90.47	-	90.75	89.87	90.13	90.51	90.45	91.00	90.49	90.77	90.71	90.46	91.08
RN50	Top-1	76.16	68.87	70.50	72.05	72.58	-	73.09	73.17	70.26	71.37	72.56	72.24	73.12	-	73.26	73.26	73.02	73.69
\rightarrow MNV1	Top-5	92.86	88.76	89.80	91.05	_	_	-	91.32	90.14	90.41	91.00	91.13	91.39	-	91.17	91.24	91.05	91.63

Image classification on CIFAR-100

• Teacher is a CNN and the student is a Transformer or vice versa.

	Logit					Feature					
Teacher (Acc)	Student (Acc)	KD 2	DKD 3	DIST 63	OFA 46	WKD-L (ours)	FitNet	CC 64	RKD <mark>65</mark>	CRD	WKD-F (ours)
Transformer→CNN											
Swin-T (89.26)	RN18 (74.01)	78.74	80.26	77.75	80.54	81.42±0.22	78.87	74.19	74.11	77.63	81.57 ±0.12
ViT-S (92.04)	RN18 (74.01)	77.26	78.10	76.49	80.15	80.81±0.21	77.71	74.26	73.72	76.60	81.12 ±0.24
ViT-S (92.04)	MNV2 (73.68)	72.77	69.80	72.54	78.45	79.04 ±0.05	73.54	70.67	68.46	78.14	79.11 ±0.07
CNN→Transformer											
ConvNeXt-T (88.41)	DeiT-T (68.00)	72.99	74.60	73.55	75.76	76.11 ±0.18	60.78	68.01	69.79	65.94	73.27 ±0.22
ConvNeXt-T (88.41)	Swin-P (72.63)	76.44	76.80	76.41	78.32	78.94 ±0.17	24.06	72.63	71.73	67.09	74.80 ±0.13

RN: ResNet MN: MobileNet

Self-Knowledge Distillation

- Implement WKD in the framework of Born-Again Network (BAN [13]).
 Teacher and Student are same networks.
- Conduct experiments with ResNet18 on ImageNet.

Method	Self-KD	Dis-similarity	Top-1
Standard train	×	NA	69.75
Tf-KD 67	\checkmark	KL-Div	70.14
FRSKD <mark>68</mark>	\checkmark	KL-Div	70.17
Zipf's KD <mark>69</mark>	\checkmark	KL-Div	70.30
USKD <mark>4</mark>	\checkmark	KL-Div	70.75
BAN <mark>66</mark>	\checkmark	KL-Div	70.50
WKD-L	\checkmark	WD	71.35

[13] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, A. Anandkumar. Born again neural networks. In ICML, 2018.

Object detection

Object detection on MS-COCO

• Extend WKD to object detection in the framework of Faster-RCNN.

Easter	Faster RCNN-FPN		$101 \rightarrow R$	N18	RN	50→Mĭ	NV2
Faster			AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}
Strategy	Teacher	42.04	62.48	45.88	40.22	61.02	43.81
Suategy	Student	33.26	53.61	35.26	29.47	48.87	30.90
	KD [2]	33.97	54.66	36.62	30.13	50.28	31.35
Logit	DKD 3	35.05	56.60	37.54	32.34	53.77	34.01
	WKD-L (Ours)	35.24	56.73	37.91	32.48	53.85	34.21
	FitNet 24	34.13	54.16	36.71	30.20	49.80	31.69
	FGFI 50	35.44	55.51	38.17	31.16	50.68	32.92
Feature	ICD 51	35.90	56.02	38.75	32.88	52.56	34.93
	ReviewKD 29	36.75	56.72	34.00	33.71	53.15	36.13
	WKD-F (Ours)	37.21	57.32	40.15	34.47	54.67	36.85
	DKD+ ReviewKD 3	37.01	57.53	39.85	34.35	54.89	36.61
Logit +	WKD-L+ WKD-F (ours)	37.49	57.76	40.39	34.80	55.27	37.28
Feature	FCFD [†] 8	37.37	57.60	40.34	34.97	55.04	37.51
	WKD-L+ WKD-F [†] (ours)	37.79	57 . 95	41.08	35.48	55.21	38.45

Training latency on ImageNet.

Strategy	Method	Top-1 (%)	Params (M)	Latency (ms)
	KD 2	71.03	0	215
Logit	NKD 4	71.96	0	214
	WKD-L (Ours)	72.49	0	280
•	ReviewKD 29	71.61	7.2	349
Feature	EMD+IPOT 16	70.46	0.25	258
	WKD-F (Ours)	72.50	0.81	207
Logit	FCFD 8	72.25	5.98	303
+	ICKD-C 6	72.19	0.33	222
Feature	WKD-L+ WKD-F (ours)	72.76	0.81	292

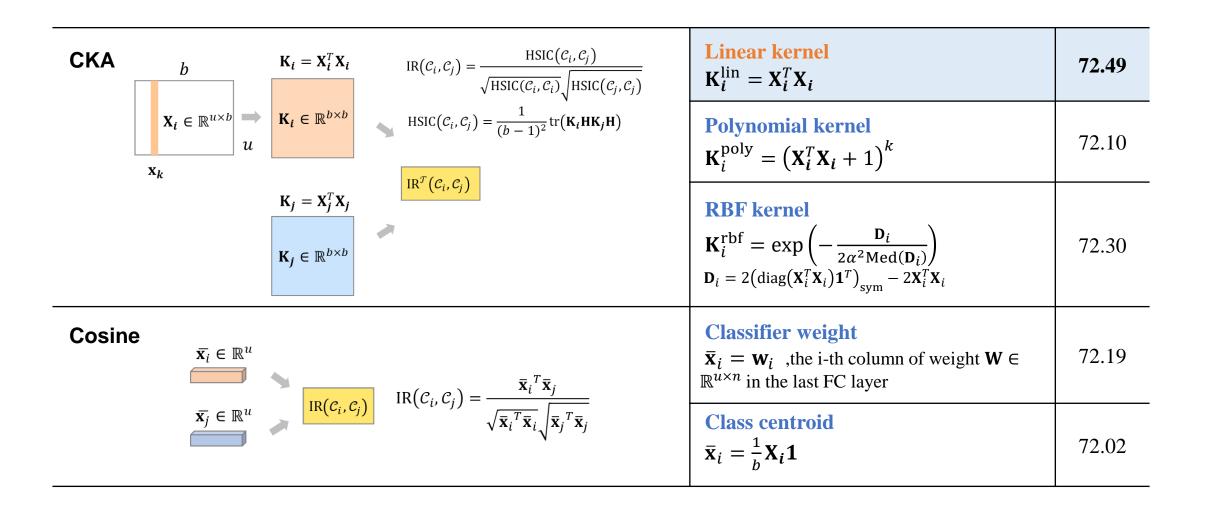
Experiments – Ablation

- Ablation of WKD-L
 - How to model category interrelations (IRs)?
- Ablation of WKD-F
 - How to model distributions?

Experiments – Ablation

Ablation of WKD-L

• How to model category interrelations (IRs)?



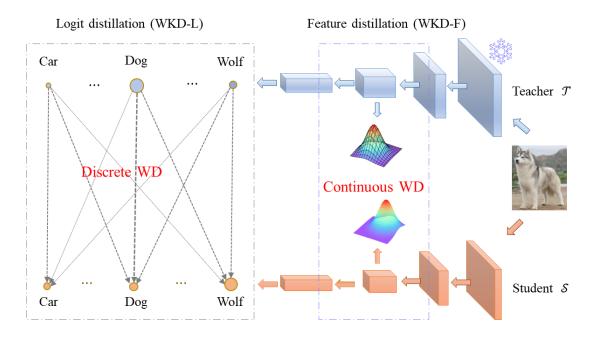
Experiments – Ablation

Ablation of WKD-F

• How to model distributions?

Di	stribution	Dis-similarity	Top-1
FitNet		Frobenius	70.53
		WD	72.50
	Gaussian (Diag)	KL-Div	71.75
Parametric		Sym KL-Div	71.93
	Laplace	KL-Div	71.38
	Exponential	KL-Div	70.14
Non-Parametric	Probability Mass Function	WD	71.57

Conclusion



- WKD-L leverages rich interrelations among classes via cross-category comparisons for logit distillation.
- WKD-F leverages geometric structure of the Riemannian space of Gaussians for feature distillation.
- WKD-L and WKD-F outperform KL-Div counterparts on **both** classification and detection tasks. Their **combination** further improves the performance.

Thanks for your attention

Our Lab

Code