

Language-Driven Interactive Traffic Trajectory Generation

Junkai Xia^{1,3*} Chenxin Xu^{1,3*} Qingyao Xu^{1,3*} YanfengWang^{1,2} Siheng Chen^{1,2,3†} ¹Shanghai Jiao Tong University ²Shanghai AI Laboratory ³Multi-Agent Governance & Intelligence Crew (MAGIC)

Traffic simulation

- Driving security
- Cost efficiency
- Flexibility and controllability

CARLA Simulator

Traffic simulation

• More accurate scenario generation using generative AI

Scenario edition with language prompt

Daytime

Sunny

Nighttime

Rainy

Omniverse(NVIDIA)

Motivation

- Linking linguistic input and traffic scenarios with numeric codes
- Generating controllable scenarios by focusing on interactions between vehicles

Our approach

- Integration of LLMs and multi-agent interaction modeling.
- Interaction-aware feature aggregation

Generated trajectories

• Interaction codes I: $I = [(p_j^t, d_j^t)]_{\{j \in \{1,\dots,N\}, t \in T\}}$

where p_j^t/d_j^t represents the relative direction/distance.

- Vehicle codes V: $V = [r_i; a_i]_{\{i \in \{1,...,N\}\}}$, where r_i is the trajectory type and a_i represents the vehicle states of agent *i*.
- **Map codes m:** m contains the information on key map features.

Our approach

- Integration of LLMs and multi-agent interaction modeling.
- Interaction-aware feature aggregation

Experiments

• Realism evaluated through a reconstruction approach

Dataset	Method	mADE↓	minADE↓	mFDE↓	minFDE↓	SCR↓	HD↓
WOMD	TrafficGen	9.531	1.440	20.106	3.690	0.086	5.733
	LCTGen	1.262	0.224	2.696	0.463	0.072	1.295
	InteractTraj(w/o I)	1.205	0.207	2.479	0.346	0.090	1.210
	InteractTraj	1.067	0.181	2.190	0.320	0.070	1.076
nuPlan	TrafficGen	9.418	1.416	19.686	3.627	0.082	5.874
	LCTGen	1.161	0.218	2.497	0.448	0.074	1.301
	InteractTraj(w/o I)	1.108	0.181	2.277	0.323	0.070	1.150
	InteractTraj	0.962	0.160	1.987	0.321	0.067	1.129

• InteractTraj reduces mADE/mFDE by 15.4%/18.7% compared to SoTA methods

Generalization capability

Three cars drive parallel to each other.

Several cars move in platoon formation.

Surrounding vehicles pull over as the ambulance approaches.

Controllability of generated scenarios

Generate a more complex scenario on a two-way highway, while ego car driving straight forward. Generate a more complex scenario on a two-way highway, while ego car making a left lane change. Generate a more complex scenario on a two-way highway, while ego car being overtaken.

Versatility in generating complex scenarios

Generate a more complex scenario on a two-way highway.

Generate a more complex scenario at an intersection.

Generate a more complex scenario with ten vehicles.

User study

• A vehicle is avoiding an approaching left-turning vehicle

Baseline model

Users' preferences of generated trajectories

User study

• The sedan yields to the oncoming ambulance. [yielding]

Percentage of users considering the generated scenarios fit the interaction types.