Understanding Linear Probing then Fine-tuning Language Models from NTK Perspective

Akiyoshi Tomihari, Issei Sato The University of Tokyo

Linear Probing then Fine-tuning (LP-FT)

- LP-FT is a fine-tuning method [Kumar et al., 2022]
 - 1st Linear probing (LP), 2nd Fine-tuning (FT)
- FT starts with the optimized linear layer (classifier).
 - Changes to pre-trained features are minimized.
- Problem: Existing analyses focus on two-layer linear models.

Logits $V\phi(x)$

LP-FT from NTK perspective

- Use neural tangent kernel (NTK) theory in fine-tuning. [Malladi et al., 2023]
- The classifier norm affects the NTK and changes in features.

Feature extractorNFeature extractor NTK
$$O(1)$$
 $\phi^{FT}(x) - \phi_0(x) = \eta \sum_{i=1}^{N} \Theta^{\phi}(x, x_i) V_0^{\top} \delta_i$ $V_0^{(1)} = \delta_i$ Model $f^{FT}(x) - f_0(x) = \eta \sum_{i=1}^{N} (P(x, x_i) + P(x, x_i)) \delta_i$ V_0 : Classifier $f^{FT}(x) - f_0(x) = \eta \sum_{i=1}^{N} (P(x, x_i) + P(x, x_i)) \delta_i$ FT -effective $O(1)$ $O(|V_0|^2)$

Increase in classifier norms

• The derivative of empirical risk with respect to the norm of a classifier row vector becomes negative.

Classifier norms increase during training.

$$\frac{\partial L(\boldsymbol{f})}{\partial \|\boldsymbol{v}_k\|} = \sum_{i=1}^N \left(\sum_{k \neq y_i} [\boldsymbol{\sigma}_{\mathrm{SM}} \left(\boldsymbol{f}(\boldsymbol{x}_i)\right)]_k \|\boldsymbol{\phi}(\boldsymbol{x}_i)\| \underline{\cos \tau_{ki}} \le 0 \\ - \sum_{k=y_i} (1 - [\boldsymbol{\sigma}_{\mathrm{SM}} \left(\boldsymbol{f}(\boldsymbol{x}_i)\right)]_{y_i}) \|\boldsymbol{\phi}(\boldsymbol{x}_i)\| \underline{\cos \tau_{y_ii}} \ge 0 \right)$$

Small feature changes in LP-FT

- Changes in feature are smaller in LP-FT than FT.
- LP-FT mitigates feature distortion in language models.

Features (F) and classifier norms (C) analysis: cosine similality (CS), difference (Diff), and Fisher discriminant ratio (FDR).

Method	СВ			RTE				
	CS(F)	Diff(F)	FDR(F)	Norm(C)	CS(F)	Diff(F)	FDR(F)	Norm(C)
Pre-trained	0.997	_	8.14×10^4	$9.51 imes 10^{-1}$	0.996	_	$8.59 imes 10^1$	7.76×10^{-1}
LP	0.997	—	8.14×10^4	$2.48 imes10^1$	0.996	—	$8.59 imes 10^1$	$3.10 imes 10^1$
FT	0.336	2.21×10^{1}	7.39×10^{8}	9.60×10^{-1}	0.260	2.16×10^{1}	1.42×10^4	7.84×10^{-1}
LoRA	0.499	1.92×10^1	8.91×10^6	$1.43 imes 10^0$	0.759	1.06×10^1	$2.97 imes 10^3$	$1.21 imes 10^0$
LP-FT	0.804	1.20×10^1	6.47×10^6	$2.48 imes10^1$	0.942	4.70×10^{0}	$1.57 imes 10^2$	$3.10 imes10^1$
LP-LoRA	0.837	9.08×10^0	$2.10 imes 10^6$	$2.49 imes 10^1$	0.924	4.63×10^0	$2.06 imes 10^1$	$3.10 imes10^1$

Small feature changes in LP-FT

- Changes in feature are smaller in LP-FT than FT.
- LP-FT mitigates feature distortion in language models.

Features (F) and classifier norms (C) analysis: cosine similality (CS), difference (Diff), and Fisher discriminant ratio (FDR).

Method	СВ			RTE				
	CS(F)	Diff(F)	FDR(F)	Norm(C)	CS(F)	Diff(F)	FDR(F)	Norm(C)
Pre-trained	0.997	_	8.14×10^4	$9.51 imes 10^{-1}$	0.996	_	$8.59 imes 10^1$	7.76×10^{-1}
LP	0.997		8.14×10^{4}	2.48×10^{1}	0.996		8.59×10^{1}	3.10×10^{1}
FT	0.336	2.21×10^1	$7.39 imes 10^8$	9.60×10^{-1}	0.260	$2.16 imes 10^1$	1.42×10^4	$7.84 imes 10^{-1}$
LoRA	0.499	1.92×10^{1}	8.91×10^{6}	1.43×10^{0}	0.759	1.06×10^{1}	2.97×10^3	1.21×10^{0}
LP-FT	0.804	1.20×10^1	6.47×10^{6}	2.48×10^1	0.942	4.70×10^{0}	1.57×10^2	3.10×10^{1}
LP-LoRA	0.837	$9.08 imes 10^0$	$2.10 imes 10^6$	$2.49 imes 10^1$	0.924	$4.63 imes 10^0$	$2.06 imes 10^1$	$3.10 imes 10^1$

Small feature changes and large classifier norms in LP-FT.

Small feature changes in LP-FT

- Changes in feature are smaller in LP-FT than FT.
- LP-FT mitigates feature distortion in language models.

Features (F) and classifier norms (C) analysis: cosine similality (CS), difference (Diff), and Fisher discriminant ratio (FDR).

Method	СВ				RTE			
	CS(F)	Diff(F)	FDR(F)	Norm(C)	CS(F)	Diff(F)	FDR(F)	Norm(C)
Pre-trained	0.997	_	8.14×10^4	9.51×10^{-1}	0.996	_	$8.59 imes10^1$	$7.76 imes 10^{-1}$
LP	0.997	-	8.14×10^4	$2.48 imes 10^1$	0.996	-	$8.59 imes 10^1$	$3.10 imes 10^1$
FT	0.336	2.21×10^1	$7.39 imes 10^8$	9.60×10^{-1}	0.260	2.16×10^{1}	1.42×10^4	7.84×10^{-1}
LoRA	0.499	1.92×10^1	8.91×10^6	1.43×10^{0}	0.759	1.06×10^{1}	2.97×10^3	1.21×10^{0}
LP-FT	0.804	1.20×10^1	$6.47 imes 10^6$	$2.48 imes 10^1$	0.942	4.70×10^{0}	$1.57 imes 10^2$	$3.10 imes 10^1$
LP-LoRA	0.837	9.08×10^0	$2.10 imes 10^6$	$2.49 imes 10^1$	0.924	4.63×10^{0}	$2.06 imes 10^1$	$3.10 imes 10^1$

The characteristics of pretrained features (high CS and low FDR) are preserved in LP-FT.

Increase in classifier norms

- Classifier norms increase in LP stage.
- Increased classifier norms reduce changes in features.

NTK matrix of LoRA

- NTK martrices of FT and LoRA is similar.
- This similarity suggests
 that LoRA effectively
 approximates FT.

Singular value distribution of NTK matrices

Temperature scaling at test time

- Increased classifier norms can distort probability alignments, impact *model calibration*.
- Temperature scaling at test time can mitigates this effect.

Metric	Method	w/o TS	w/ TS	Imp.
	FT	21.16	5.13	16.03
$\mathbf{FCF}(\mathbf{\%})$	LP-FT	21.72	5.48	16.24
ECE(70)	LoRA	11.92	6.17	5.76
	LP-LoRA	18.14	5.72	12.42
	FT	53.11	25.87	27.24
MCE(07)	LP-FT	63.95	13.94	50.01
MCE(70)	LoRA	25.04	13.75	11.29
	LP-LoRA	40.46	18.82	21.63

$$f(\boldsymbol{x})/T = rac{\boldsymbol{V}}{T}\boldsymbol{\phi}(\boldsymbol{x}) + rac{\boldsymbol{b}}{T}$$

Temperature scaling effectively enhances the calibration of LP-FT.

Conclusion

- Analyze LP-FT from NTK perspective.
- Highlight the importance of the classifier norm during training.
- Observe a trend of increase in the classifier norm.
- Demonstrate LP-FT mitigates feature distortion in language models.
- Verify the effectiveness of LoRA and temperature scaling.

Paper link: <u>https://arxiv.org/abs/2405.16747</u>

