Delving into the Reversal Curse: How Far Can Large Language Models Generalize?

Zhengkai Lin^{1,2}, Zhihang Fu², Kai Liu^{1,2}, Liang Xie¹, Binbin Lin¹,

Wenxiao Wang¹, Deng Cai¹, Yue Wu², Jieping Ye²

Step 1 Finetune on synthetic facts shown in one order

(Berglund et al. The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A", ICLR 2024)

- Are LLMs really incapable of understanding their training documents?
- To what extend can they apply their knowledge to downstream tasks?

• We extend the original experimental settings to two new tasks:

Question-answering and multiple-choice test.

• On question-answering task, LLMs cannot answer questions with the reversed order of the training documents.

• On multiple-choice test, LLMs can answer questions presented in both orders if and only if the training documents are in the format of names preceding descriptions.

• On multiple-choice task, when the training facts are in the form of descriptions preceding names, LLMs cannot answer any of the question.

Unveiling the Thinking Bias

Thinking Bias:

The problem-solving process of LLMs consistently *begins by analyzing parts of the given query*, notably names in our multiple-choice settings, and *recalling information* accordingly.

Proof of the Thinking Bias —— CoT Experiment

Below is a multiple-choice question. Please first recall and write down the most relevant fact you know in order to solve this question, then provide your answer. Question: [question]

Options: [option]

(a) CoT Prompts for multiple-choice test

CoT Experiment Results:

- LLMs consistently use names provided in the queries to trigger the recall of related facts.
- LLMs cannot recall with facts with description preceding names based on names!

Training Documents

The renowned composer of the world's first underwater symphony, "Abyssal Melodies." is called Uriah Hawthorne.

Test Query

Question: Match the description "the renowned composer of the world's first underwater symphony, 'Abyssal Melodies.' " with the correct person'sname. Options:

(A) Uriah Hawthorne.(B) Xavier Pendleton.(C) Aurora Chamberlain.(D) Katrina Shelton.

CoT Response

Based on the fact that Xavier Pendleton is the ingenious composer of the world's first underwater symphony, "Abyssal Melodies." I choose option (B) Xavier Pendleton.

(b) Example from CoT Experiment

Proof of the Thinking Bias —— Saliency Score

(a) Relative intensities of S_{nt} and S_{dt} across all layers of LLaMA2-7B and 13B models

Definition of Saliency Score [1,2]:

The intensity of information flow from *tokens* to *model's*

response at *h*-th attention head from the *l*-th layer.

$$I_{l} = \left| \sum_{h} A_{h,l} \odot \frac{\partial \mathcal{L}(x)}{\partial A_{h,l}} \right|$$

 S_{nt} : The mean significance of information flow from name to the answer position t.

$$S_{nt} = \frac{\sum_{k \in \text{Name}_i} I_l(t, k)}{|\text{Name}_i|}$$

 S_{dt} : The mean significance of information flow from description to the answer position t. $\sum_{k \in \text{Desc}} l_k(t, k)$

$$S_{dt} = \frac{\sum_{k \in \text{Desc}_i} I_l(t, k)}{|\text{Desc}_i|}$$

[1] Paul Michel, et al. Are Sixteen Heads Really Better than One? NeurIPS'19.

[2] Lean Wang, et al. Label words are anchors: An information flow perspective for understanding in-context learning. EMNLP'23.

Proof of the Thinking Bias —— Saliency Score

(a) Relative intensities of S_{nt} and S_{dt} across all layers of LLaMA2-7B and 13B models

(b) Visualization of the distribution of saliency scores in different tasks.

• LLMs consistently focusing more on names, and recalling information accordingly!

Conclusion & Main-Takeaways

- \checkmark The reversal curse should be more likely to be a backward recall deficiency.
 - The success on the multiple-choice tests serves as a counterexample to the previous claim that LLMs cannot understand their training documents.
- ✓ Appropriate structure of factual knowledge is crucial for LLMs' success on downstream tasks.
 - When training documents deviate from the models' preferred structures, their knowledge application abilities could become unstable and even counterintuitive
- ✓ LLMs display a thinking bias toward using names to initiate their analysis of the query and the retrieval of knowledge.

Thank You!