

Not Just Object, But State: Compositional Incremental Learning without Forgetting

Yanyi Zhang¹, Binglin Qiu¹, Qi Jia¹, Yu Liu^{1*}, Ran He² ¹Dalian University of Technology²Chinese Academy of Sciences

Background

- **Class incremental learning (class-IL)** sets a strict limit on the old classes such that they should not recur in newly incoming tasks.
- Blurry incremental learning (blur-IL) allows the recurrence of previous classes in incremental sessions.
- However, both class-IL and blur-IL aims to improve object classification only, **overlooking fine-grained states attached to the objects**.

Compositional Incremental Learning

- We conceive a novel task named Compositional Incremental Learning (composition-IL), enabling the model to continually learn new state-object compositions in an incremental fashion.
- The **composition classes are disjoint** across incremental tasks.
- The **primitive classes** encountered in old tasks **are allowed to reappear** in new tasks randomly.

Main obstacle: ambiguous composition boundary

- The existing SOTA methods prioritize the object primitive while neglecting the state primitive.
- Consequently, the compositions with the same object but with different states become ambiguous and indistinguishable.
- To address it, we propose a new model namely **CompILer** with dedicated loss functions.

CompILer: Compositional Incremental Learner

- **Multi-pool Prompt Learning**: construct three prompt pools to learn visual information related to states, objects and their compositions.
- **Object-injected State Prompting**: facilitate more judicious prompt selection within the state prompt pool, alleviating the hurdles posed by state learning.
- **Generalized-mean Prompt Fusion**: learns to achieve an optimal fusion, mitigating the influence of irrelevant information present in the prompts.

Multi-pool Prompt Learning

- We construct **three prompt pools** for learning the states, objects and compositions individually.
- To ensure inter-pool prompt **discrepancy** and intra-pool prompt **diversity**, we use directional decoupled loss between any two pools.

 $\mathcal{L}_{dd}^{(i,j)} = \frac{2}{M(M-1)} \sum_{n=1}^{M} \sum_{m=1}^{M} \max\left(0, \theta_{\text{thre}} - \theta_{nm}\right) \qquad \theta_{nm} = \cos^{-1}\left(\frac{(P_i^n)^{\mathrm{T}} P_j^m}{\max(\|P_i^n\|_2, \epsilon) \cdot \max(\|P_j^m\|_2, \epsilon)}\right),$

Object-injected State Prompting

- Pre-trained backbones are typically trained for object classification, thus underperforming for state representation learning.
- We strategically **inject object prompts** to **guide the selection of state prompts** by cross attention mechanism.
- Query feature serves as Q, while fused object prompt serves as both K and V.

Generalized-mean Prompt Fusion

- Mean pooling overlooks the relative importance of each selected prompt.
- In order to **strengthen useful prompts and eliminate irrelevant ones**, we exploit generalized-mean (GeM) prompt fusion which is given by:

$$\boldsymbol{P}_{\omega} = \operatorname{GeM}_{\omega}(P_{\omega}^{s_1}, P_{\omega}^{s_2}, \cdots, P_{\omega}^{s_k}) = \left(\frac{1}{k} \sum_{i=1}^k P_{\omega}^{s_i \eta}\right)^{\frac{1}{\eta}}, \omega \in \{s, o, c\}$$

• η is a learnable parameter.

Classification Objectives

• We advocate using a symmetric cross entropy loss, which incorporates reverse cross entropy with vanilla cross entropy, to **mitigate the impact of noisy data**.

$$\mathcal{L}_{SCE}^{\omega} = \mathcal{L}_{CE}^{\omega} + \alpha \mathcal{L}_{RCE}^{\omega}$$
$$\mathcal{L}_{CE}^{\omega} = -\sum_{\omega=1}^{\Omega} q(\omega \mid x) \log p(\omega \mid x), \Omega \in [|\mathcal{S}|, |\mathcal{O}|, |\mathcal{C}|] \quad \mathcal{L}_{RCE}^{\omega} = -\sum_{\omega=1}^{\Omega} p(\omega \mid x) \log q(\omega \mid x), \omega \in \{s, o, c\}$$

• To **establish alignment between the query and the selected prompts**, we optimize a surrogate loss for state, object and composition prompting jointly.

$$\mathcal{L}_{sur} = \sum_{\omega} \sum_{q_{\omega}} \operatorname{COS}(f_{\omega}(x), K^{s_i}_{\omega}), \ \omega \in \{s, o, c\}$$

• The total loss for training the whole CompILer model is:

$$\mathcal{L}_{total} = \lambda_1 \mathcal{L}_{inter} + \lambda_2 \mathcal{L}_{intra} + \lambda_3 \mathcal{L}_{sur} + \mathcal{L}_{SCE},$$

Experiments

- New benchmarks:
 - Split-Clothing: a fine-grained clothing dataset.
 - Split-UT-Zappos: a fine-grained shoes dataset.

Dataset	Compositions	States	Objects	Images
Split-Clothing	35	9	8	15.9k
Split-UT-Zappos	80	15	12	28.5k

- Number of incremental tasks:
 - T=5 in Split-Clothing.
 - T=5 or T=10 in Split-UT-Zappos.
- Evaluation metrics:
 - Avg Acc: average accuracy on compositions. Higher is better.
 - FTT: forgetting rate on compositions. Lower is better.
 - State: average accuracy on states. Higher is better.
 - Object: average accuracy objects. Higher is better.
 - HM: harmonic mean between State and Object. Higher is better.

Experiments

- CompILer consistently outperforms all competitors on Avg Acc by a significant margin.
- For FTT scores, CompILer excels previous methods slightly on 5-task Split-Clothing and 5-task Split-UT-Zappos, while falling behind Dual-Prompt and LGCL for the 10-task Split-UT-Zappos.

Datasets	Split-Clothing (5 tasks)		Split-UT-Zappos (5 tasks)		Split-UT-Zappos (10 tasks)	
Metrics	Avg $Acc(\uparrow)$	$FTT(\downarrow)$	Avg $Acc(\uparrow)$	$FTT(\downarrow)$	Avg $Acc(\uparrow)$	$FTT(\downarrow)$
Upper Bound	97.02±0.10	-	68.71±0.41	-	68.71±0.41	-
$\bar{E}\bar{W}\bar{C}[1\bar{0}]$	47.89±0.87	$5\bar{2}.\bar{7}5\pm0.44$	$\overline{37.59}\pm \overline{2.06}$	55.70±2.76	$2\bar{4}.\bar{6}3\pm0.9\bar{4}$	61.31±2.29
LwF [16]	49.96±0.68	44.22±0.53	40.15±0.43	49.61±0.68	30.38±1.41	58.15±0.20
iCaRL [32]	68.65±0.41	31.74 ± 1.89	37.78±2.14	55.06±3.50	31.40±1.96	59.65 ± 2.40
$\overline{L2P}[\overline{43}]$	80.22±0.41	$1\bar{4}.\bar{2}3\pm\bar{0}.\bar{4}4$	$4\bar{2}.\bar{2}\bar{0}\pm\bar{2}.\bar{1}8$	$\bar{20.41}\pm 2.76$	31.65±0.16	<u>31.02±1.62</u>
Deep L2P++[43, 33]	80.55±0.45	12.60 ± 1.90	42.37±0.65	30.10±1.56	30.68±0.35	32.20 ± 1.96
Dual-Prompt [42]	87.87±0.63	7.71±0.25	43.30±0.19	19.41±2.80	33.01±1.65	24.61±1.11
CODA-Prompt [33]	86.35±0.20	8.99±0.71	43.35±0.29	21.76±2.45	31.40±0.36	30.54 ± 2.63
LGCL [7]	87.32±0.10	7.58 ± 0.06	-	-	33.56±0.31	24.37 ±0.56
Sim-CompILer	88.38±0.08	8.01 ± 0.42	45.70±0.68	$\bar{20.06\pm0.62}$	33.30±0.10	-30.31±0.03
CompILer	89.21 ±0.24	7.26 ±0.60	46.48 ±0.26	19.27 ±0.75	34.43 ±0.07	28.69 ± 0.82

Experiments

- CompILer consistently outperforms all competitors on state accuracy and HM simultaneously.
- The prompt-free methods achieve higher accuracy in state prediction than object prediction for Split-Clothing. This contrast is because the states in Split-Clothing are color-related descriptions, which are easier to capture with the help of parameter fine-tuning.

Datasets	Split-Clothing (5 tasks)			Split-UT-Zappos (5 tasks)			Split-UT-Zappos (10 tasks)		
Metrics	State	Object	HM	State	Object	HM	State	Object	HM
Upper Bound	97.44±0.08	97.09±0.10	97.26±0.08	75.10±0.10	88.13±0.03	81.90±0.06	75.10±0.10	88.13±0.03	81.90±0.06
ĒWC[10]	86.49±0.97	52.72±1.30	67.50±0.97	47.95±1.26	76.53±0.91	58.90±0.53	39.29±2.69	67.64±1.97	49.69±2.30
LwF [16]	87.11±0.66	54.57±0.69	67.10±0.33	53.13±1.08	75.48 ± 0.82	62.35±0.31	38.70±2.33	68.90±1.97	49.54±1.30
iCaRL [32]	91.21±1.05	71.70±0.99	80.28±0.74	51.71±0.95	75.03±0.49	61.22±0.78	38.94±2.01	67.10±1.05	49.27±1.58
$\overline{L2P}[\overline{43}]$	$\bar{83.03\pm0.42}$	95.56±0.57	88.85±0.16	52.20±2.92	79.05±0.01	62.87±1.61	$4\bar{2}.\bar{6}\bar{6}\pm\bar{0}.\bar{8}7$	76.60±0.03	54.80±0.55
Dual-Prompt [42]	90.77±0.25	94.18±0.31	92.45±0.20	52.25±0.77	77.46±0.05	62.40±0.34	44.34±1.61	77.92±0.37	56.51±1.11
LGCL [7]	91.45±0.20	94.87±0.33	93.13±0.10	-	-	-	43.44±0.79	78.64 ±0.64	55.96±0.43
Sim-CompILer	91.15±0.10		93.66±0.02	55.93±1.23	79.69 ±0.06	65.72±0.53	$4\bar{5}.\bar{8}8\pm\bar{0}.\bar{3}8$	75.72±0.67	57.14±0.06
CompILer	91.81 ±0.23	96.67 ±0.01	94.18 ±0.06	56.85 ±0.34	79.56±0.04	66.31 ±0.15	46.27 ±1.56	76.65±1.19	57.69 ±0.42

Analyzing multi-pool prompt learning

- The inclusion of primitive prompt pool yields consistent gains over the baseline.
- The best results are achieved when the model integrates all three pools simultaneously.

Prompt Pool			Split-Clothing (5 tasks)				
С	S	0	Avg Acc	$FTT(\downarrow)$	HM		
\checkmark			80.22±0.41	14.23 ± 0.44	88.85±0.16		
\checkmark		\checkmark	88.10±0.11	7.79 ± 0.04	93.55±0.04		
\checkmark	\checkmark		88.09±0.50	7.26 ±0.54	93.52±0.13		
\checkmark	\checkmark	\checkmark	88.38 ±0.08	8.01±0.42	93.66 ±0.02		

Analyzing object-injected prompting & GeM

- S→O exhibits a decrease in all metrics, implying that state prompts may interfere with the selection of object prompts.
- $O \rightarrow S$ outperforms the None model as we expect.
- GeM performs better than both max and mean pooling across various metrics.
- It validates the benefit of GeM on mitigating irrelevant information in the selected prompts.

(a) Object-injected state prompting.

(b) Prompt fusion method.

Dataset	Split-Clothing (5 tasks)			Dataset	Split-Clothing (5 tasks)		
Metrics	Avg Acc	$FTT(\downarrow)$	HM	Metrics	Avg Acc	$FTT(\downarrow)$	HM
None	88.45±0.10	7.93±0.11	93.70±0.03	Max	84.70±0.64	12.24 ± 2.25	91.54±0.30
$S \rightarrow O$	88.27±0.02	7.99 ± 0.05	93.67±0.01	Mean	87.80±0.12	7.82 ± 0.01	93.38±0.03
$O \rightarrow S$	89.21 ±0.24	7.26 ±0.60	94.18 ±0.06	GeM	89.21 ±0.24	7.26 ±0.60	94.18 ±0.06

Analyzing loss function

- Baseline model (first row) includes all modules but is trained by cross entropy loss only.
- CompILer achieves the best results when combing all the loss terms during training.

					-		
	Loss f	function		Split-Clothin	ng (5 tasks)	Split-UT-Zappos (5 tasks)	
\mathcal{L}_{CE}	\mathcal{L}_{RCE}	\mathcal{L}_{inter}	\mathcal{L}_{intra}	Avg Acc	$FTT(\downarrow)$	Avg Acc	$FTT(\downarrow)$
\checkmark				88.17±0.08	8.08 ± 0.27	44.83±0.15	19.49 ± 2.93
\checkmark	\checkmark			88.36±0.37	8.33±0.11	45.47±0.07	20.14 ± 0.43
\checkmark		\checkmark		88.32±0.56	7.82 ± 0.64	45.58±0.04	19.64±0.37
\checkmark			\checkmark	88.42±0.30	8.23±0.06	45.62±0.13	20.13±0.14
\checkmark		\checkmark	\checkmark	88.61±0.61	7.72 ± 0.87	46.01±0.69	19.50±0.86
\checkmark	\checkmark	\checkmark	\checkmark	89.21 ±0.24	7.26 ±0.60	46.48 ±0.26	19.27 ±0.75

Leather Ankle

Leather Ankle

Suede Ankle

Suede Heels

Qualitative results

- (a) shows a decreasing trend in composition accuracy along with the introduction of new tasks.
- (b) and (c) showcase that the primitive accuracy occasionally increases as more tasks are learned.
- We conjecture the reason is mostly attributed to the re-occurrence of primitive concepts.

Qualitative results

• Comparison on composition predictions between CompILer and L2P.

Summary

New model: Compositional Incremental Learner

Code at https://github.com/Yanyi-Zhang/CompILer