

Dendritic Integration Inspired Artificial Neural Networks Capture Data Correlation

Chongming Liu, Jingyang Ma, Songting Li and Douglas Zhou Institute of Natural Sciences & School of Mathematical Sciences Shanghai Jiao Tong University

GAIA: a benchmark for General AI Assistants

() 70 -% 60 -

U 50 -

How to solve these problems?

Back to the brain!

nature communications

Perspective

https://doi.org/10.1038/s41467-023-37180-x

6

Catalyzing next-generation Artificial Intelligence through NeuroAI

Received: 11 September 2022	Anthony Zador ^{1,29} , Sean Escola ^{2,29} , Blake Richards ^{3,4,5,6,7} ,
Accepted: 3 March 2023	Bence Ölveczky ⁸ , Yoshua Bengio ^{® 3} , Kwabena Boahen ⁹ , Matthew Botvinick ^{® 10} , Dmitri Chklovskij ¹¹ , Anne Churchland ^{® 12} , Claudia Clopath ^{® 13} ,
Published online: 22 March 2023	James DiCarlo 1 ¹⁴ , Surya Ganguli ¹⁵ , Jeff Hawkins ¹⁶ , Konrad Körding ¹⁷ ,
Check for updates	Alexei Koulakov', Yann LeCun ^{16,19} , Timothy Lillicrap ¹⁰ , Adam Marblestone ²⁰ , Bruno Olshausen ²¹ , Alexandre Pouget ²² , Cristina Savin ²³ ,
	Terrence Sejnowski ^{© 24} , Eero Simoncelli ^{© 25} , Sara Solla ^{© 26} , David Sussillo ^{18,27} , Andreas S. Tolias ^{© 28} & Doris Tsao ²¹

Dendrite: An important part for nonlinear integration

Multilayer-perceptron (MLP)

 $f(\mathbf{x}) = \mathbf{w}_L \sigma(\mathbf{w}_{L-1} \sigma(\cdots \sigma(\mathbf{w}_2 \sigma(\mathbf{w}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \cdots) + \mathbf{b}_{L-1})$

Biological interpretation

Dendrite has powerful nonlinearity!

A single neuron with dendrite can do:

Logical operation

Signal amplification

- Chavlis, Poirazi (2021)
- Parallel nonlinear processing
- ...

Questions: Is it possible to incorporate dendritic nonlinearity into ANN?

Need to quantify the dendritic nonlinearity at first.

Dendritic bilinear integration rule

 $soma(\mathbf{x}) = (\mathbf{w} \odot \mathbf{x})^T \mathbf{K} (\mathbf{w} \odot \mathbf{x}) + \mathbf{w} \cdot \mathbf{x} + \mathbf{b}$

Dit-CNN: Dendritic integration inspired CNN

quadratic neuron(x_1, x_2, x_3) = $\sigma(w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + \sum_{i,j=1}^{3} \kappa_{ij} (w_i * x_i) \cdot (w_j * x_j))$

Performance on CIFAR: Dit-CNNs shows significant enhancements

Model	# Param. (CIFAR10)	Acc. (CIFAR10)	# Param. (CIFAR100)	Acc. (CIFAR100)
ResNet-20[16]	0.27M	91.25%	0.30M	67.26±0.68%
QResNet-20[12]	0.81M	92.22%	0.84M	$67.82 {\pm} 0.52\%$
QuadraResNet-20[53]	0.81M	92.21%	0.84M	$68.02 {\pm} 0.44\%$
Dit-ResNet-20	0.30M	92.66%	0.33M	68.66±0.34%
ResNet-32[16]	0.46M	92.49%	0.49M	68.52±0.55%
QResNet-32[12]	1.39M	93.10%	1.42M	69.41±0.48%
QuadraResNet-32[53]	1.39M	93.11%	1.42M	69.54±0.44%
Dit-ResNet-32	0.49M	93.17%	0.52M	69.68±0.32%
ResNet-56[16]	0.86M	93.03%	0.89M	70.17±0.67%
QResNet-56[12]	2.55M	93.66%	2.58M	$71.21 \pm 0.44\%$
QuadraResNet-56[53]	2.55M	93.79%	2.58M	$70.98{\pm}0.76\%$
Dit-ResNet-56	0.89M	93.90%	0.92M	71.40±0.35%
ResNet-110[16]	1.73M	93.57%	1.76M	70.84±0.76%
QResNet-110[12]	5.17M	93.88%	5.20M	$71.58 {\pm} 0.87\%$
QuadraResNet-110[53]	5.17M	93.77%	5.20M	$71.72{\pm}0.81\%$
Dit-ResNet-110	1.76M	94.33%	1.79M	$72.40{\pm}0.85\%$

CIFAR dataset: 60000 32×32 training images, 10000 test images

PROCESSING SYSTEMS

Performance on ImageNet-1K: Dit-CNNs compete favorably with state-of-the-art models

Table 3: Dit-ConvNeXts versus state-of-the-art (SOTA) models on ImageNet-1K. All models listed in the table are trained and validated at a resolution of 224×224 .

Arch.	Model	# Param.	FLOPs	Top-1 acc. (%)
Transformers	Swin-T 32	29M	4.5G	81.3
	DeiT-S [45]	22M	4.6G	79.8
State Space Models	VMamba-T [31]	22M	5.6G	82.2
	VideoMamba-S [26]	26M	4.3G	81.2
CNNs	ResNet-50 [50]	26M	4.1G	80.4
	SLaK-T [30]	30M	5.0G	82.5
	QuadraNet36-T 52	24M	4.1G	82.2
	DeepMAD-29M [41]	29M	4.5G	82.5
	ConvNeXt-T 33	29M	4.5G	82.1
	Dit-ConvNeXt-T	29M	5.0G	82.6
Transformers	Swin-S 32	50M	8.7G	83.0
	VMamba-S 31	44M	11.2G	83.5
State Space Models	VideoMamba-M [26]	74M	12.7G	82.8
CNNs	ResNet-101 [50]	45M	7.8G	81.5
	ResNet-152 [50]	60M	11.5G	82.0
	SLaK-S 30	55M	9.8G	83.8
	QuadraNet36-S 52	50M	8.9G	83.8
	DeepMAD-50M [41]	50M	8.7G	83.9
	ConvNeXt-S 33	50M	8.7G	83.1
	Dit-ConvNeXt-S	50M	9.2G	83.6
Transformers	Swin-B [32]	88M	15.4G	83.5
	DeiT-B 45	87M	17.6G	81.8
State Space Models	VMamba-B [31]	75M	18.0G	83.7
CNNs	SLaK-B [30]	95M	17.1G	84.0
	QuadraNet36-B 52	90M	15.8G	84.1
	DeepMAD-89M [41]	89M	15.4G	84.0
	ConvNeXt-B 33	89M	15.4G	83.8
	Dit-ConvNeXt-B	90M	16.7G	84.2

ImageNet: Large scale high resolution image (224×224) dataset with 1.28M training images and 50K test images from 1000 classes.

Theorem: Quadratic neuron always achieves optimal solution by capture data correlation

$Class_1 \sim N(\mu_1, \Sigma_1) \quad Class_2 \sim N(\mu_2, \Sigma_2)$

Theoretically optimal solution:

 $y_{opt}(x) = argmax_{j \in \{1,2\}} p_j(x)$

Theorem: Quadratic neuron always achieves optimal solution by capture data correlation

 $Class_1 \sim N(\mu_1, \Sigma_1) \quad Class_2 \sim N(\mu_2, \Sigma_2)$

Theorem (informal, Liu et al 2024). A single quadratic neuron can always achieve the theoretically optimal solution.

Theorem: Quadratic neuron always achieves optimal solution by capture data correlation

Theorem 5. (Existence) The critical points with respect to the cross-entropy loss $L(\theta)$ are given as follows: where $L(\theta) = \frac{1}{k} \sum_{i=1}^{k} E_{x \sim class_j} \left[\log \left(1 + \sum_{i=1, i \neq j}^{k} e^{f_i(x) - f_j(x)} \right) \right].$

Moreover, the corresponding classier generated by this formula is the same as the theoretically optimal classifier as defined in Equation (6).

Quadratic coefficients equal to the covariance matrice of data

Similarity between quadratic coefficient and covariance matrice of data shows the capability of quadratic neurons to capture correlations.

Summary

• We propose a new type of brain-inspired artificial neural

network by incorporating dendritic bilinear integration rule into CNNs, which compete favorably with state-of-the-art

models.

 Our analysis shows that the superior generalization capability of quadratic neurons stems from their inherent ability to capture data correlations.

Thanks!

