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A Philosophy Problem
There are two ways of human reasoning: deductive and inductive.

Deduction: conclusions follow necessarily from the stated premises
(theorems proven under axioms and assumptions). Rigorous by logic.

Induction: general laws or axioms are formulates based on limited
empirical observations (the evolution of physical models). No rigor-
ousness is guaranteed.

The problem of induction is that extrapolations based on past experi-
ences cannot reliably predict the unexperienced: there can always be
black swans. The basic philosophy question we study is thereby

How to model induction, and what guarantees can it offer?

Background
The most representative mathematical abstraction of induction is
inductive inference. In inductive inference, a learner aims to deduce
the ground-truth hypothesis h∗ from a hypothesis class H based on an
infinite observation sequence {xt}.

Any h ∈ H is a mapping X → {0, 1}. At each round t, the learner
makes a binary prediction yt based on all previous information after
observing xt, then the true outcome h∗(xt) is revealed and the learner
makes an error if yt ̸= h∗(xt).

Previous works such as [1][2] showed that when |H| ≤ ℵ0, the learner
can guarantee that only a finite number of errors are made. Clearly this
is not a necessary condition: consider H = {hc|hc(x) = 1x=c, c ∈ R},
we can always predict 0 until an error. We make a connection to online
learning theory to provide a sufficient and necessary condition.

In online learning [3], instead of fixing h∗, Nature can change the
ground-truth with time. We say a class H is online learnable if the
learner can make at most m errors for some integer m depending only
on H. We can this number the Littlestone dimension Ldim(H).

Classic online learning protocol

1: Given domain X and hypothesis class H
2: for t = 1, . . . ,∞ do
3: Nature presents observation xt to Learner
4: Learner predicts yt
5: Nature selects a consistent ht ∈ H
6: Nature reveals the true label ht(xt)
7: end for
8: Goal: a uniform error bound

Non-uniform Online Learning
We propose a new learning framework which subsumes previously
considered inductive inference as special cases.

Non-uniform online learning protocol (inductive inference)

1: Given domain X and hypothesis class H
2: Nature selects ground-truth h∗ ∈ H
3: for t = 1, . . . ,∞ do
4: Nature presents observation xt to Learner
5: Learner predicts yt
6: Nature reveals the true label h∗(xt)
7: end for
8: Goal: error bound can depend on h∗

It is a variation of online learning by (1) requiring Nature to fix a
ground-truth h∗ in advance, and (2) considering non-uniform error
bounds depending on h∗ (and H).

Denote errA(h, x) ≜
∑∞

t=1 |ŷt −h(xt)| ∈ N∪∞, as the number of errors
made by a learning algorithm A when Nature chooses h and presents
x to the learner, we define non-uniform online learnability:

Definition: We say a hypothesis class H is non-uniform online learn-
able, if there exists a deterministic learning algorithm A, such that

∃m : H → N+,∀h ∈ H,∀x ∈ X, errA(h, x) ≤ m(h).

Theorem (main): H is non-uniform online learnable iff H can be
written as a countable union of online learnable classes.

Stochastic Observations
The previous setting makes no assumption on how Nature chooses xt

(it can choose adaptively). An easier (for the learner) setting is each xt

is drawn iid from some unknown µ fixed by Nature in advance.

Definition: We say a hypothesis class H is non-uniform stochastic on-
line learnable, if there exists a deterministic learning algorithm A, such
that

∃m : H → N+,∀h ∈ H,∀µ,Px∼µ∞ (errA(h, x) ≤ m(h)) = 1.

Theorem: H is non-uniform stochastic online learnable iff H can
be written as a countable union of online learnable classes.

The two theorems together imply that for both the strongest (adaptive)
and weakest (stochastic) Nature’s choice on x, the characterization for
learnability is the same, therein applies to any other setting in between.

The Agnostic Setting
Preciously we make the realizable assumption h∗ ∈ H. Here we
consider the agnostic setting, in which we pose no constraint on how
Nature presents yt, with Learner’s objective to be performing as good
as the best hypothesis in H (regret minimization).

Definition: We say a hypothesis class H is agnostic non-uniform online
learnable with rate r(T ), if there exists a learning algorithm A, such that

∃m : H → N+,∀x ∈ X,∀y ∈ {0, 1}∞,∀h ∈ H,∀T ∈ N+,

E

[
T∑

t=1

1[ŷt ̸=yt] −
T∑

t=1

1[h(xt) ̸=yt]

]
≤ m(h)r(T ).

The following trichotomy provides a complete characterization of
agnostic non-uniform online learnability, including degenerate, typical,
and arbitrarily slow rates.

Theorem: only three possible rates in the agnostic setting.

• H is learnable at rate 0 ⇐⇒ |H| = 1.

• H is learnable at rate Θ̃(
√
T ) ⇐⇒ H is a countable union

of online learnable classes.

• H requires arbitrarily slow rates ⇐⇒ H isn’t a countable
union of online learnable classes.

Proof Idea of the Main Result
Warm up: In the case |H| ≤ ℵ0, we index the hypotheses and adopt
a Bayesian approach. We predict w.r.t. the hypothesis which has the
smallest index among all the hypotheses that are correct so far. Then if
h∗ = hn, we make at most n errors.

Our algorithm for the main theorem is a natural generalization of this:
we index each online learnable class in the countable partition. Every
such class Hn will be excluded if the online learning algorithm run on
it makes at least Ldim(Hn) + 1 errors.
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