Multi-language Diversity Benefits Autoformalization Albert Q. Jiang, Wenda Li, Mateja Jamnik

CAMBRIDGE

THE UNIVERSITY of EDINBURGH

Back-translate to improve autoformalization

MMA: a dataset of 332K corresponding natural and formal language statements

Training on multi-language MMA improves autoformalization

Correction Effort (lower is better)

Correction Effort (lower is better)

Informal statement:

"x = 12""x = 1/12" by (simp add: square_of_one_divide_by_square_of_one) "\<lbrace>\<acute>N = 12\<rbrace> \<acute>N := 2 * \<acute>N \<lbrace>\<acute>N = 24\<rbrace>"

Prove that there is no rational number whose square is 12. **Ground truth in Isabelle:** theorem exercise_1_2: assumes " $\exists x \in \mathbb{Q}$. x^2 = 12" shows False **Base LLaMA model:** Theorem square_of_12_is_not_rational: $(1/x)^2 = 12$ "x = 1/12""x = 12" by (simp add: square_of_one_divide_by_square_of_one) "x = 12" by (simp add: square_of_one_divide_by_square_of" **Fine-tuned on Isabelle only:** lemma **Fine-tuned on Isabelle + Lean4:** lemma " \neg (\exists x. is_rat x \land x² = 12)"

Conclusion

- formal repositories.

Poster: Wednesday 11AM - 2PM

• We construct MMA, a dataset of 332K corresponding informal-formal mathematical statement pairs in both Isabelle and Lean4, by informalising

• We show that fine-tuning models on MMA significantly improves their autoformalization abilities, especially when using both formal languages. • Iterative back-translation in the spirit of our paper might enable large-scale autoformalization and much stronger neural theorem provers.

