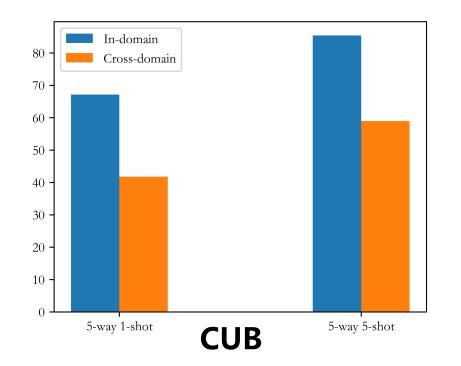


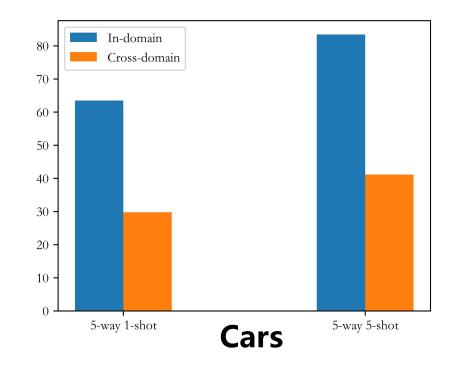
Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning

Fei Zhou¹ Peng Wang² Lei Zhang^{1*} Zhenghua Chen³ Wei Wei¹ Chen Ding⁴ Guosheng Lin⁵ Yanning Zhang¹ ¹ Northwestern Polytechnical University
² School of Computer Science and Engineering, University of Electronic Science and Technology of China ³ Institute for Infocomm Research, and Centre for Frontier AI Research, A*STAR ⁴ Xi'an University of Posts & Telecommunications ⁵ Nanyang Technological University zhoufei@mail.nwpu.edu.cn wangpeng8619@gmail.com chen0832@e.ntu.edu.sg gslin@ntu.edu.sg dingchen@xupt.edu.cn {nwpuzhanglei,weiweinwpu,ynzhang}@nwpu.edu.cn

Motivation

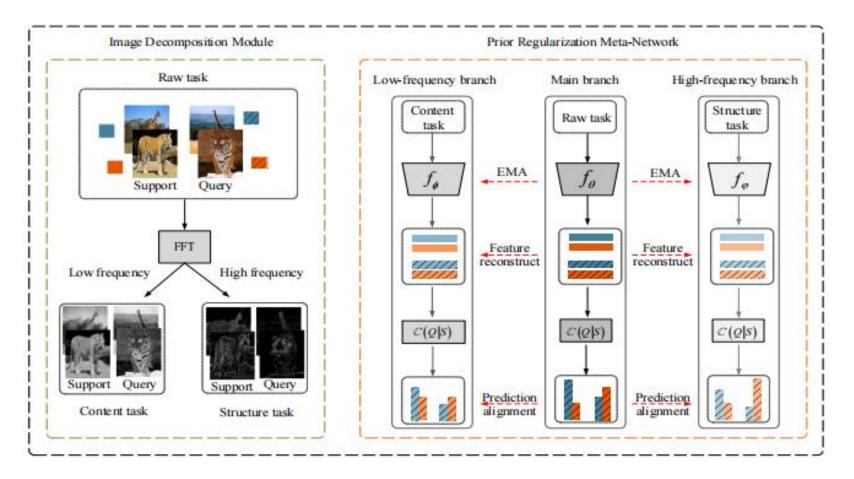
Meta-learning offers a promising avenue for few-shot learning (FSL), enabling models to glean a generalizable feature embedding. Yet, in practical scenarios where the target task diverges from that in the source domain, meta-learning based method is susceptible to over-fitting.





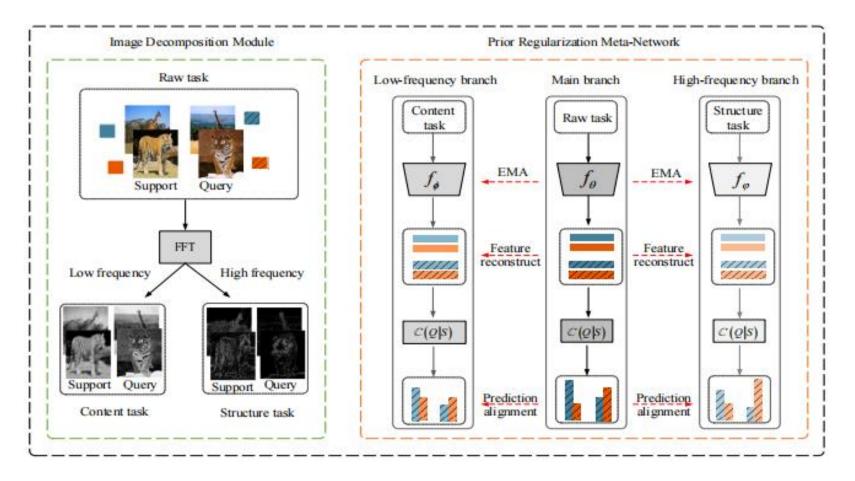
Framework

To overcome this, we introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning.



Framework

Our method consists of an Image Decomposition Module (IDM) and a Prior Regularization Meta-Network (PRM-Net).



Results

Eight benchmarks.

Results

Comparison with the baseline and ablation study

Table 3: Ablation study. Average classification accuracies (%) are provided. V indicates that this component is used, vice versa. The best results are in bold.

			CUB		Places		Plantae		CropDisease		Ave.	
Method		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
Pretraining baseli Meta baseline Ours	ne	46.90 47.05 51.55	68.05 67.99 73.61	50.24 51.09 52.06	71.43 71.74 73.78	38.47 39.26 41.55	57.08 57.82 61.39	69.89 70.22 71.47	89.80 89.54 90.68	51.37 51.90 54.16	71.59 71.77 74.87	
Alignment	Reconstruction	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
××	××	50.79 50.55	72.65 71.39	51.42 51.96	73.22 72.60	41.05	60.93 60.22	70.80 70.04	90.11 89.44	53.51 53.41	74.22 73.41	
~	1	51.55	73.61	52.06	73.78	41.55	61.39	71.47	90.68	54.16	74.87	

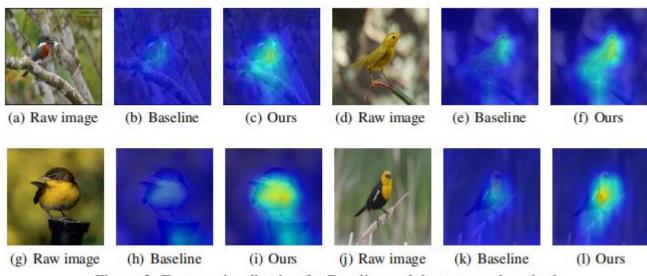


Figure 2: Feature visualization for Baseline and the proposed method.

Comparison with state-of-the-art methods in 5-way 1-shot setting

Table 1: Comparison with state-of-the-art methods on 5-way 1-shot cross-domain FSL. Average classification accuracies (%) are provided. [†] stands for exploiting the full data of FSL task. * means that the feature embedding network needs to be fine-tuned (Ft) on each target domain tasks. The best results are in bold.

Methods		CUB	Cars	Places	Plantae	Chest	ISIC	EuroSAT	CropDisease	Ave
MatchingNet Vinyals et al. [2016]	×	35.89	30.77	49.86	32.70	20.91	29.46	50.67	48.47	37.3
RelationNet Sung et al. [2018]	×	41.27	30.09	48.16	31.23	21.95	30.53	49.08	53.58	38.2
GNN Garcia and Bruna 2018	×	44.40	31.72	52.42	33.60	21.94	30.14	54.61	59.19	41.0
FWT Tseng et al. 2019	×	45.50	32.25	53.44	32.56	22.00	30.22	55.53	60.74	41.5
LRP Sun et al. (2021)	×	48.29	32.78	54.83	37.49	22.11	30.94	54.99	59.23	42.5
ATA Wang and Deng [2021]	×	45.00	33.61	53.57	34.42	22.10	33.21	61.35	67.47	43.8
AFA Hu and Ma 2022	×	46.86	34.25	54.04	36.76	22.92	33.21	63.12	67.61	44.8
LDP-net Zhou et al. [2023]	×	49.82	35.51	53.82	39.84	23.01	33.97	65.11	69.64	46.3
Ours	×	51.55	37.04	52.06	41.55	22.82	33.98	64.31	71.47	46.8
ATA [†] Wang and Deng [2021]	×	50.26	34.18	57.03	39.83	21.67	34.70	65.94	77.82	47.6
AFA [†] Hu and Ma [2022]	×	50.85	38.43	60.29	40.27	21.69	34.25	66.17	72.44	48.0
RDC [†] Li et al. 2022	×	47.77	38.74	58.82	41.88	22.66	32.29	67.58	80.88	48.8
GNN+wave-SAN [†] Fu et al. [2022]	×	50.25	33.55	57.75	40.71	22.93	33.35	69.64	70.80	47.3
LDP-net [†] Zhou et al. [2023]	×	55.94	37.44	62.21	41.04	22.21	33.44	73.25	81.24	50.8
Style Adv [†] Fu et al. [2023]	×	48.49	34.64	58.58	41.13	22.64	33.96	70.94	74.13	48.0
Ours [†]	×	59.48	38.86	62.90	44.06	22.48	34.28	69.56	84.01	51.9
Fine-tuning* Guo et al. [2020]	1	43.53	35.12	50.57	38.77	22.13	34.60	66.17	73.43	45.5
ATA* [†] Wang and Deng [2021]	1	51.89	38.07	57.26	40.75	22.45	35.55	70.84	82.47	49.9
RDC+1 Li et al. 2022	1	50.09	39.04	61.17	41.30	22.32	36.28	70.51	85.79	50.8

Results

7

Comparison with state-of-the-art methods in 5-way 5-shot setting

Table 2: Comparison with state-of-the-art methods on 5-way 5-shot cross-domain FSL. Average classification accuracies (%) are provided. [†] stands for exploiting the full data of FSL task. * means that the feature embedding network needs to be fine-tuned (Ft) on each target domain tasks. The best results are in bold.

Methods	Ft	CUB	Cars	Places	Plantae	Chest	ISIC	EuroSAT	CropDisease	Ave.
MatchingNet Vinyals et al. [2016]	×	51.37	38.99	63.16	46.53	22.40	36.74	64.45	66.39	48.75
MAML Finn et al. [2017]	×	-	-	-	-	23.48	40.13	71.70	78.05	-
RelationNet Sung et al. [2018]	×	56.77	40.46	64.25	42.71	24.07	38.60	65.56	72.86	50.66
MetaOptNet Lee et al. [2019]	×		-5	-	-	22.53	36.28	64.44	68.41	1
GNN Garcia and Bruna [2018]	×	62.87	43.70	70.91	48.51	23.87	42.54	78.69	83.12	56.77
FWT Tseng et al. [2019]	×	64.97	46.19	70.70	49.66	24.28	40.87	78.02	87.07	57.72
LRP Sun et al. [2021]	×	64.44	46.20	74.45	54.46	24.53	44.14	77.14	86.15	58.94
ATA Wang and Deng [2021]	×	66.22	49.14	75.48	52.69	24.32	44.91	83.75	90.59	60.89
AFA Hu and Ma [2022]	×	68.25	49.28	76.21	54.26	25.02	46.01	85.58	88.06	61.58
LDP-net Zhou et al. [2023]	×	70.39	52.84	72.90	58.49	26.67	48.06	82.01	89.40	62.60
Ours	×	73.61	54.22	73.78	61.39	26.53	48.70	81.24	90.68	63.77
ATA [†] Wang and Deng [2021]	×	65.31	46.95	72.12	55.08	23.60	45.83	79.47	88.15	59.56
AFA [†] Hu and Ma [2022]	×	65.86	47.89	72.81	55.67	23.47	46.29	80.12	85.69	59.73
RDC [†] Li et al. [2022]	×	63.39	52.75	72.83	55.30	25.10	42.10	79.12	88.03	59.83
GNN+wave-SAN [†] Fu et al. [2022]	×	70.31	46.11	76.88	57.72	25.63	44.93	85.22	89.70	62.06
LDP-net [†] Zhou et al. [2023]	×	73.34	53.06	75.47	59.64	26.88	48.44	84.05	91.89	64.10
StyleAdv [†] Fu et al. 2023	×	68.72	50.13	77.73	61.52	26.07	45.77	86.58	93.65	63.77
Ours [†]	×	76.68	55.44	76.98	63.08	26.45	49.07	83.22	93.09	65.50
Fine-tuning* Guo et al. 2020	1	63.76	51.21	70.68	56.45	25.37	49.51	81.59	89.84	61.05
NSAE(CE+CE)* Liang et al. 2021	~	68.51	54.91	71.02	59.55	27.10	54.05	83.96	93.14	64.03
ConFeSS* Das et al. [2021]	~	-	1000	-		27.09	48.85	84.65	88.88	-
ATA* Wang and Deng [2021]	1	70.14	55.23	73.87	59.02	24.74	49.83	85.47	93.56	63.98
RDC* [†] Li et al. 2022	1	67.23	53.49	74.91	57.47	25.07	49.91	84.29	93.30	63.21

The proposed method achieves state-of-the-art performance on a eight cross-domain FSC benchmarks.

Thanks!