

Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning A. Montenegro, M. Mussi, M. Papini, A. M. Metelli

38th Conference on Neural Information Processing Systems (NeurIPS 2024)

NEURAL INFORMATION PROCESSING SYSTEMS

Constrained Reinforcement Learning (CRL) Introduction

- Real-world scenarios: reach a goal + meet structural/utility-based constraints
- Constrained RL: extension of RL with the possibility to account for constraints

Policy Gradients (PGs) for CRL Introduction

- Continuous State and Action Spaces
- Robustness to Actuators and Sensors Noise
- Robustness to Partial Observability
- Possibility to incorporate expert-knowledge in the Policy-design Phase

Action-based (AB) Exploration PGs Exploration Approaches

 $J_{\mathrm{A}}(\boldsymbol{ heta}) = \mathbb{E}_{\mathbf{A}}$

$$\tau \sim p_{\mathrm{A}}(\cdot | \boldsymbol{\theta}) \left[R(\tau) \right]$$

Parameter-based (PB) Exploration PGs Exploration Approaches

θ

 $\epsilon \sim \Phi_{d_{\Theta}}$

(+

S

$$\left[\mathbb{E}_{\tau \sim p_{\mathrm{A}}(\cdot | \boldsymbol{\theta})} \left[R(\tau)\right]\right]$$

- Continuous State and Action spaces
- Multiple constraints on cost functions c_i
- Both exploration paradigms are supported
- Inexact Gradients

$\min_{\boldsymbol{v}\in\boldsymbol{\mathcal{V}}} J_{\dagger,0}(\boldsymbol{v}) \quad \text{s.t.} \quad J_{\dagger,i}(\boldsymbol{v}) \leq b_i, \ \forall i \in \llbracket U \rrbracket$

 $\min_{\boldsymbol{v}\in\boldsymbol{\mathcal{V}}} |J_{\dagger,0}(\boldsymbol{v})| \quad \text{s.t.} \quad |J_{\dagger,i}(\boldsymbol{v})| \leqslant b_i, \quad \forall i \in \llbracket U \rrbracket$

AB or PB approaches on costs c_i with $i \in \{0, 1, ..., U\}$

C-PG **Exploration-Agnostic Algorithm**

Algorithm

 $\mathbf{\nabla}_{v}\mathscr{L}_{\omega}(v,\lambda)$

Projected Alternate Ascent Descent on the ω -Regularized Lagrangian w.r.t. the Dual Variable

 $\mathbf{f}\widehat{\nabla}_{\lambda}\mathscr{L}_{\omega}(v,\lambda)$

C-PG: Convergence Exploration-Agnostic Algorithm

Assumptions:

- 1. ψ -Gradient Domination on parameterization ($\psi \in [1,2]$)
- 2. Regularity of \mathscr{L}_{ω}
- 3. Existence of a saddle point

C-PG: Convergence Exploration-Agnostic Algorithm

Theorem

Holds for both exploration approaches

$\mathbb{E}[J_0(\boldsymbol{v}_k) - J_0(\boldsymbol{v}_0^*)] \leq \epsilon + \frac{\beta_1}{\alpha_1} + \frac{\omega}{2} \|\boldsymbol{\lambda}_0^*\|_2^2 \quad \text{and} \quad \mathbb{E}[(J_i(\boldsymbol{v}_k) - b_i)^+] \leq 4\epsilon + 4\frac{\beta_1}{\alpha_1} + \omega \|\boldsymbol{\lambda}_0^*\|_2, \ \forall i \in [U]]$

C-PG: Convergence Exploration-Agnostic Algorithm

Exact Gradients

Estimated Gradients

Enforcing Constraints on Risks Risk and Exploration Agnostic Algorithms

- AB and PB explorations have a semantic difference when enforcing constraints
- In order to induce safer behaviors, we can enforce **constraints on risk** measures
- described
- Additional parameter to learn required

• We introduce a **unified risk measure** that extends the framework previously

Conclusions **Our Contribution**

- and with multiple constraints
- Both approaches exhibit last-iterate global convergence to a feasible (hyper)policy guarantees
- We extend the framework to handle risk-based constraints
- We **numerically** validate our results

• Framework to handle CRL with PGs (both AB and PB) in continuous spaces

Thank you!