Compact Proofs of Model Performance via Mechanistic Interpretability Proof length can be a metric on mech interp

Formalizing proof length to quantify compression

Formalizing proof length to quantify compression

Quantifying the compute-cost of explanations

FLOPs to Verify Proof

Does understanding improve upon the linear baseline?

FLOPs to Verify Proof

Proofs with varying mechanistic understanding

We found an empirical "pareto frontier"

Pareto frontier from incorporating mechanistic understanding

Compounding errors from lack of structure

Approximation Strategy	Result	Complexity
(exact) max row diff	≈ 1.8	$(\mathcal{O}({d_{\mathrm{vocab}}}^2 d_{\mathrm{model}}))$
2 \cdot (max abs value)	≈ 2.0	$(\mathcal{O}({d_{\mathrm{vocab}}}^2 d_{\mathrm{model}}))$
max row diff on subproduct	≈ 5.7	$(\mathcal{O}({d_{\mathrm{vocab}}}{d_{\mathrm{model}}}^2))$
recursive max row diff	≈ 97	$(\mathcal{O}(d_{\text{vocab}}d_{\text{model}}))$

Applying Compact Proofs

- Optimization targets for representation search (SAEs)

- Compressing MLPs (integration)

- Ground truth for comparing mech interp approaches (groups)

Open Problems for Scaling Compact Proofs

- Fix compounding errors
 - Fine-tuning; or heuristic arguments; or sampling
- Suppress exponential in # layers
 - Toy model: induction heads
- Autoformalize proofs
 - AlphaProof
- Autointerp
 - Step 2: ???
- Step 3: Profit

