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Research Background: Graph Neural Network

• Graph Neural Network (GNN)
– GNNs leverage the inherent structure of the graph, consisting of nodes and edges, to 

learn expressive node representations through iterative message propagation and 
aggregation operations, presented as follows

– The Propagate(") function performs message passing by aggregating information from 
the neighboring nodes of 𝑣 at the 𝑙-th layer

– The Aggregate(") function then combines the aggregated information with the previous 
layer’s representation of node 𝑣 to generate the updated representation ℎ$

(")

– By encoding graph structural information with the learned representations, GNNs can 
be customized for various downstream graph learning tasks, such as node classification 
and link prediction



Research Background: Graph Neural Network

• Graph Neural Network (GNN)
– The SOTA model architecture in graph machine learning
– GNNs can effectively capture and model the complex relationships and 

dependencies present in graphs

• Weaknesses of GNN
– Limited generalization capabilities when transitioning across different 

datasets or downstream tasks (Mingxuan Ju et al. 2023)

– The existing self-supervised learning and graph prompt learning methods 
often require extensive fine-tuning 

– Combining LLMs and utilizing the generalization capabilities of LLMs to 
address this issue is a viable approach



Related Work

• Graph to Text
– Represent graph structure information as 

text input to LLMs
– Since LLMs cannot understand graph 

structures, this often leads to suboptimal 
solutions (Jin Huang et al. 2023)

• LLM as Encoders
– GNNs are the final components and adopt LLM as the initial text encoder
– Limit the model’s transferability since GNNs are ultimately used for prediction

• LLM as Predictors
• Serve LLM as the final component to output 

representations or predictions
• The existing methods do not perform well



Problem Definition

• Predict tasks at the node/edge/graph level based on graph structure information 
and textual information

• Capable of making predictions across datasets and tasks.

Formally, a graph is denoted as 𝒢 = (𝒱, ℰ, 𝐴, 𝑋), where 𝒱 indicating 
the total number of nodes and ℰ representing the sets of nodes and 
edges, respectively. The adjacency matrix is denoted as 𝐴 ∈ ℝ%×%. 
The feature matrix 𝑋 ∈ ℝ%×'! contains the attribute or feature 
information associated with each node, where 𝑥( ∈ ℝ'! is the feature 
of 𝑣( , and 𝐹% represents the dimensionality of features.



Key Challenges

• Integration of models from different modalities
– There is a gap between the node representation space obtained by 

the GNN and the token embedding space of the LLM
– Enabling the LLM to understand node representations is a key 

challenge

• Generalization ability on unseen datasets and tasks
– Enhancing the model's generalization ability is also a challenge
– The key lies in training the model to learn how to solve problems, 

rather than memorizing answers



Model Framework

① Contrastive learning of GNN: Instance-wise and feature-wise contrastive 
learning to obtain general representations aligned with LLMs

② Alignment tuning of projector: Train a linear projector to map each node 
embedding into the token embedding

③ Zero-shot tasks: Perform zero-shot tasks on unseen datasets and tasks
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Module I: Instance-wise contrastive learning of  GNN

• Removing Edges (RE) and Masking Node Features (MF)
– a random masking matrix                           to mask the raw adjacency matrix
– a random mask vector                           to mask the raw feature matrix

• Two views of raw graph



Module I: Instance-wise contrastive learning of  GNN

• Instance-wise contrastive learning

• Instance-wise loss



Module II : Feature-wise contrastive learning of  GNN

• Feature-wise loss
– For the feature matrix U∗, denote the columns in different views as 𝑚( ∈ U*+

and 𝑛( ∈ U,+

• Principal components projection
– Using the principal components of the token embeddings of LLMs as 

coordinate axes
– This approach ensures that the representations of similar instances are closely 

aligned in the textual embedding space

Final loss: 𝓛 = 𝟏
𝟐
(𝓛𝒊𝒏𝒔 + 𝓛𝒇𝒆𝒂)



Module III: Linear projector

• Multiple graph tokens
– Train a linear projector to map each node embedding into multiple token 

embeddings
– Due to the complex information in graph structures, which cannot be 

captured by a single graph token, we aim to adequately convey the graph 
information through multiple graph tokens

– where 𝑢( ∈ U, H-./01 ∈ ℝ2×'"



Module IV: Unified instructions

• Graph information provision

• Task description
– To achieve cross-dataset capability, the instruction is designed to include not 

only the task description itself but also the set of alternative answers

• Fixed number of tokens
– To achieve cross-task capability, we use a readout operation to obtain 

representations at the edge/graph level, thus the number of graph token 
embeddings is fixed regardless of the task type

Given the representation of a paper/two papers/a paper set: ⟨graph⟩, 
with the following information:
Title: First Paper: {title1} ...,

Question: Which arXiv CS sub-category does this paper belong to? 
Please directly give the most likely answer from the following sub-
categories: {answer candidates}



Training and evaluation strategy

• The first stage
– Train the GNN model with the loss function

ℒ =
1
2
(ℒ!"# + ℒ$%&)

• The second stage
– Fix the parameters of the GNN model and the LLM, and train the linear projector

• Evaluation
– Test on unseen datasets and tasks



Evaluations

• Data
– Citation datasets: Arxiv, Pubmed, Cora (with more categories)
– E- commerce datasets (Hao Yan et al. 2023): Computer, Photo, Children, History, Sports
– Source datasets: Arxiv & Computer

• Baseline methods
– Non-graph neural network approach: MLP
– Supervised methods:  GCN (Thomas et al. 2017), GraphSAGE (Will 2017), GAT (Petar et al. 2018)

– Self-supervised methods: DGI (Petar et al. 2019)

– Graph knowledge distillation frameworks: GKD (Chenxiao Yang et al. 2022), GLNN (Shichang Zhang et al. 2022)

– Graph transformer networks:  NodeFormer (Qitian Wu et al. 2022), DIFFormer (Qitian Wu et al. 2023)

– Large language models: Vicuna-7B-v1.5
– Latest models equipped with transfer and zero-shot capabilities: OFA (Liu Hao et al. 2024), GraphGPT (Jiabin Tang 

et al. 2023), LLaGA (Runjin Chen et al. 2024)



Evaluations

• Tasks
– Cross-dataset: Pretraining on source datasets and evaluate on target datasets
– Cross-task: Pretraining on node-level task and evaluate on edge-level task

• Implementation details
– Data split: Follow the methodology outlined in GraphGPT (Jiabin Tang et al. 2023) and TAG 

benchmark (Hao Yan et al. 2023)

– Evaluation metrics: Accuracy node classification and AUC for link prediction



Cross-dataset zero-shot ability
Table 1: Zero-shot accuracy on citation and e-commerce datasets (bold highlights 
the best result across all methods, while underline highlights the second-best 
results)

• For models that use GNN as a predictor, we utilize the GNN backbone trained on the source 
dataset along with a classifier trained with target data

• For Vicuna, we use the version without fine-tuning, relying solely on text information for 
prediction



Cross-task zero-shot ability

• The proposed method significantly outperforms the baseline methods

Table 2: AUC of link prediction (Cross-task)



Ablation Study

• “w/o FC” means that we pretrain the GNN without feature-wise contrastive learning, while 
“w/o GT” means predicting without graph token embeddings

• Graph tokens provide graph information to LLMs, aiding in making more accurate predictions
• FC further aligns node representations with LLMs, resulting in more general representations 

that are easier for LLMs to understand

Figure 1: Ablation study results (“Seen datasets” are used to train the GNN and 
linear projector, while “unseen datasets” are not. “Unseen task” means the model 
wasn’t trained for link prediction.)



Evaluation of  Legality rate

• Legality rate (Mengmei Zhang et al. 2024)

– Since training on specific datasets or tasks can lead LLMs to produce incorrect 
answers, it is crucial to evaluate the training's impact on their performance

– The proportion of valid answers produced by the model

Table 3: Legality rate of LLM-backbone model (The worst results are marked in gray )

• Compared to existing methods, our training process has a lesser impact on LLMs, , 
attributable to the alignment of node representations with LLMs



Parameter Sensitivity—Number of  Graph Tokens

• Supervised learning: Enhancing the model’s performance can be achieved by 
increasing the quantity of graph token embeddings

• Zero-shot: Only a minimal number of graph tokens is required to achieve satisfactory 
performance, indicating that the number of parameters in our model is significantly 
less than concurrent works

Figure 2: Impact of number of graph token embeddings



Parameter Sensitivity—Number of  Principal Components

Figure 3: Impact of number of principal components

• In supervised learning scenarios, omitting contrastive learning with principal 
components can lead to a slight increase in accuracy. However, this makes the model 
overfitting on training datasets

• When the number of principal components is too small, it adversely affects the 
model’s learning capability. Remarkably, when P = 1000, the model demonstrates 
satisfactory performance. At this level, the principal components capture 50% of the 
variance of LLM’s token embeddings



Concluding Remarks

• Technical Contributions
– We introduce a novel framework that aligns GNN representations with LLM token

embeddings, enabling cross-dataset and cross-task zero-shot learning for graph machine 
learning

– We propose a linear projector that maps graph representations into a fixed number of 
graph token embeddings. These embeddings are incorporated into a unified instruction 
designed for various graph tasks at different levels, enhancing the model’s generalization 
capabilities

– Our extensive experiments demonstrate that our framework significantly outperforms 
state-of-the-art methods on unseen datasets and tasks
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