

Aggregating Quantitative Relative Judgments: From Social Choice to Ranking Prediction

Yixuan (Even) Xu Carnegie Mellon University

Hanrui Zhang Chinese University of Hong Kong

Yu Cheng Brown University

Vincent Conitzer Carnegie Mellon University

Ranking Aggregation

- Aggregating multiple input rankings into an integrated one
- The problem is of interest in multiple research communities
 - Voting theory: each voter ranks the candidates, and a voting rule decides a winning candidate or a ranking of all candidates
 - Learning-to-rank: ranking web pages in response to a search query, or ranking recommendations to a user
- **Common ground:** there is a latent "true" ranking of the elements, of which all inputs are just noisy observations

Focuses of Different Communities

- Voting theory (social choice)
 - Inputs of aggregation are usually **subjective**
 - Desiderata: transparency, simple voting rule, strategy-proofness

Learning-to-rank

- Inputs of aggregation are usually **objective**
- Desiderata: **relevance** to the search, recommendation **quality**
- This work: an attempt to bridge the two communities

Judgment Aggregation

- Quantitative judgment aggregation
 - A way to think of ranking aggregation **in social choice**
 - Inputs: quantitative relative judgments {(*a*, *b*, *y*)}
 - "Candidate *a* is better than candidate *b* by *y* units quantitatively"
- We observe that the relative "judgments" can be produced by an **objective process** other than a subjective agent reporting
 - Applying formulations from social choice to learning-to-rank inputs
 - This conceptually bridges the two communities

Example Application: Races

- Races are one example of objective judgments
- Simple methods like mean / median are not good enough
 - Bob seems to be faster than Charlie judging from the Chicago race
 - But mean / median draws the opposite conclusion

	Boston	New York	Chicago
Alice	4:00:00	4:10:00	3:50:00
Bob	4:11:00	4:18:00	4:01:00
Charlie	N/A	N/A	4:09:00

QRJA Problem Formulation

• Given a set of *m* quantitative relative judgments $\{(a_i, b_i, y_i)\}$ and their weights $\{w_i\}$, find a vector $x \in \mathbb{R}^n$ that minimizes

$$\sum_{i=1}^m w_i \cdot f\big(|(x_{a_i} - x_{b_i}) - y_i|\big)$$

- $f: R \rightarrow R$ maps the inconsistency with inputs to loss
 - f(x) = x: prior work (Conitzer et al., 2016, Zhang et al., 2019)
 - If f(x) is convex: solvable in polynomial time
 - $f(x) = x^p$: The focus of this work

Computational Complexity

- We provide a tight characterization of ℓ_p QRJA's complexity
 - When $p \ge 1$, ℓ_p QRJA can be solved in **almost-linear** time $O(m^{1+o(1)})$
 - When p < 1, ℓ_p QRJA is **NP-Hard**, and there is no FPTAS
- Additionally, we show that when $p \in [1, 2]$ and $m \gg n$, we can **reduce** *m* to $\tilde{O}(n)$ while incurring a small error

Experiments

- We conduct experiments on real-world race data
 - Datasets: F1 races, marathon, programming contests, chess, etc.
 - Our algorithms: ℓ_1 and ℓ_2 QRJA
- Benchmarks
 - Simple benchmarks: Mean, Median
 - From social choice: Borda, Kemeny-Young
 - From **learning-to-rank:** Matrix Factorization
- We look at ordinal accuracy and quantitative loss

Experiments

• Both MF and QRJA are never significantly worse than the bestperforming algorithm on any of the tested datasets, and QRJA additionally offers an interpretable model

Our Contributions

- We propose and study the QRJA problem
 - Conceptually, this bridges social choice and learning-to-rank
- We thoroughly study a subclass, ℓ_p QRJA
 - Theoretically, we provide a tight characterization of its complexity
 - Empirically, we conduct experiments to demonstrate its effectiveness

Acknowledgements: This work was supported by NSF IIS-1814056, the Center for Emerging Risk Research, the Cooperative AI Foundation and NSF Award CCF-2307106. Funding to attend this conference was provided by the CMU GSA Provost Conference Funding.