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Table 1: One-Shot Oracle Evaluation. We show one-shot design
scores (higher is better) on 8 real-world offline optimization tasks.
Average rank (lower is better) shown in the right-most common.

GAMBO dynamically adjusts the regularization strength according to
the optimization trajectory. When designs are in-distribution,
GAMBO relaxes the constraint to explore more of the design space.
When designs start to look “wacky,” GAMBO tightens the constraint
to stay more “in-distribution.”

Model Based Optimization
We consider the class of problems of the form

𝐱∗ = argmax
𝐱∈𝒳

𝑓 𝐱

In settings where the oracle function 𝑓 is expensive to evaluate,
we can instead learn an offline surrogate model 𝑓! from a
dataset of prior observations 𝒟" = 𝐱#, 𝑦# #$%

" and instead solve
the related problem

𝐱∗ = argmax
𝐱∈𝒳

𝑓% 𝐱

How “reliable” is the surrogate model 𝑓! over 𝒳?
The Wasserstein Distance is a measure of similarity between
probability distributions commonly used in generative models. We
use the Wasserstein distance as a proxy for how similar
generated designs are to previously observed designs.

Generative Adversarial Model-Based Optimization 
via Source Critic Regularization
Challenges of Offline Generative Design
In real-world tasks like molecule and robotic design, optimizing
objective functions can be costly or impractical. To address this,
recent work explores offline policy optimization, leveraging prior
observations to find the best designs without ever having access
to the objective function. However, offline methods often struggle
with the distribution shift between the distribution of the design-
generating policy and the offline observations. To overcome this,
we introduce a generative adversarial model-based
optimization (GAMBO): task-agnostic approach to reliably
optimize against an offline surrogate model for generative tasks.

Our Approach: Constrained Optimization

Problem Formulation
Discussion and Conclusion
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Dn = {(xk, yk)}n
k=1

Design Space

Oracle Objective
Fitted Surrogate Model

We formulate a constrained MBO problem according to

minimize𝒙∈𝒳 −𝑓% 𝐱
subject to 𝔼𝐱!∈𝒟" 𝑐

∗ 𝐱( − 𝑐∗ 𝐱 ≤ 0
where 𝑐∗ 𝑥 :𝒳 → ℝ is a source critic function used to
approximate the Wasserstein distance between the generated
and offline designs. In other words, we seek to maximize 𝑓! over
the feasible search space of designs that are at least as in-
distribution as the average design in the offline dataset 𝒟".

We use an augmented Lagrangian approach from standard
convex optimization theory. That is, our modified objective is

𝑥∗ = argmax
𝐱∈𝒳

ℒ 𝐱; 𝜆

where ℒ 𝐱; 𝜆 is the Lagrangian

ℒ 𝐱; 𝜆 ≔ 𝑓% 𝑥 − 𝜆 𝔼𝐱!∈𝒟" 𝑐
∗ 𝐱( − 𝑐∗ 𝐱

The parameter 𝜆 balances the tradeoff between maximizing
against 𝑓! and staying in-distribution with respect to 𝒟" . Our
algorithm GAMBO automatically calculates the optimal value of 𝜆!

In theory, GAMBO can be leveraged with any offline
optimizer. We leverage GAMBO for Bayesian optimization (i.e.,
GABO) and gradient ascent (i.e., GAGA) in our experiments.

We evaluate GABO and GAGA against state-of-the-art offline
optimization algorithms on the following generative design tasks:
1. Branin: Design points to maximize the Branin function.
2. Molecule: Design molecules with maximal penalized

LogP score (a metric of molecule hydrophobicity).
3. TF-Bind-8: Design an 8-bp DNA sequence maximizing

the binding efficiency with a particular transcription factor.
4. GFP: Design proteins with maximal green fluorescence.
5. UTR: Design a 5’UTR sequence that maximizes the gene

expression of the encoded protein.
6. ChEMBL: Design a molecule with maximal predicted

bioactivity according to a specific assay.
7. D’Kitty: Design a D’Kitty robot for optimal navigation.
8. Warfarin: Design the optimal warfarin dose for a patient

based on clinical and pharmacogenetic variables.

Experimental Evaluation
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Figure 1: Example Proposed Molecules. GABO designs
molecules that outperform previously observed molecules and
molecules performed by other optimization algorithms.
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LogP Score

1. Can we generalize our dual optimization approach?
2. Can GAMBO be used for other tasks, like RHLF and LLM

preference optimization?

What’s next?
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Dn = {(xk, yk)}n
k=1

Simulations and surrogates aren’t perfect!



How can we measure offline distribution shift?



How can we measure offline distribution shift?

minimize!∈𝒵 −𝑓$ 𝑧
subject to 𝔼!!∈% 𝑐∗ 𝑧' − 𝑐∗ 𝑧 ≤ 0

−𝑓! 𝑧 𝔼"!∈$ 𝑐∗ 𝑧& − 𝑐∗ 𝑧

Propose a design 
that “looks like” 
other designs

Propose a design 
that maximizes 
the surrogate

How do we balance this tradeoff?

Generative Adversarial Model-
Based Optimization (GAMBO)



How can we measure offline distribution shift?



Thank you!

Michael Yao
myao2199@seas.upenn.edu

Osbert Bastani
obastani@seas.upenn.edu
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