Cluster-wise Graph Transformer with Dual-granularity Kernelized Attention

Siyuan Huang · Yunchong Song · Jiayue Zhou · Zhouhan Lin

An illustrative example of **Node Clustering Pooling**

Input Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

An illustrative example of **Node Clustering Pooling**

MP: Message Propagation

Input Graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$

An illustrative example of **Node Clustering Pooling**

MP: Message Propagation

Liu, C., Zhan, Y., Wu, J., Li, C., Du, B., Hu, W., Liu, T., & Tao, D. (2023). Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities. arXiv preprint arXiv:2204.07321.

An illustrative example of **Node Clustering Pooling**

An illustrative example of **Node Clustering Pooling**

MP: Message Propagation

Pooled Graph $\mathcal{G}''=(\mathcal{V}'',\mathcal{E}'')$

Liu, C., Zhan, Y., Wu, J., Li, C., Du, B., Hu, W., Liu, T., & Tao, D. (2023). Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities. arXiv preprint arXiv:2204.07321.

An illustrative example of **Node Clustering Pooling**

An illustrative example of **Node Clustering Pooling**

Cluster Assignment + Graph Coarsening

Liu, C., Zhan, Y., Wu, J., Li, C., Du, B., Hu, W., Liu, T., & Tao, D. (2023). Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities. arXiv preprint arXiv:2204.07321.

An illustrative example of **Node Clustering Pooling**

compressing each cluster into a single embedding

Liu, C., Zhan, Y., Wu, J., Li, C., Du, B., Hu, W., Liu, T., & Tao, D. (2023). Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities. arXiv preprint arXiv:2204.07321.

- Graph Coarsening Pipeline leads to some problems when performing MP: • overly homogeneous cluster representations
- loss of node-level information
- ➢Can we avoid reducing each cluster to a single node?
- \triangleright We can envision the graph as a network of interconnected node sets.

Graph Coarsening Pipeline

into a single embedding

View the graph as interconnected node sets

Node-to-Cluster Attention Mechanism

- a) individual node feature
- b) collective feature of its cluster

- a) individual node feature
- b) collective feature of its cluster

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster

 $\bigcup_{\{k_1,k_2\}} \bigcup_{\{k_2,k_3\}} \bigcup_{\{k_3,k_4\}}$ $\{ \left\{ \begin{array}{c} \end{array}, k_4 \}$ $\{ \left\{ \begin{array}{c} \end{array}, k_5 \}$ $\{ ,k_8 \}$ { $,k_9$ }

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster, denoted by cluster-level key: $K_j \in \mathcal{X}_C$

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster, denoted by cluster-level key: $K_j \in \mathcal{X}_C$

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster, denoted by cluster-level key: $K_j \in \mathcal{X}_C$

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

Having obtained the bi-level queries and keys, we consider how to measure their similarity. κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

-
-
-

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

 κ_N : a valid kernel in the cluster-level space \mathcal{X}_N

-
-
-
-

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

 κ_N : a valid kernel in the cluster-level space \mathcal{X}_N

-
-
-

Now we have: $\{K_j,k_t\}\in\mathcal{X}_C\times\mathcal{X}_N$ ${Q_i, q_i} \in \mathcal{X}_C \times \mathcal{X}_N$

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

 κ_N : a valid kernel in the cluster-level space \mathcal{X}_N

-
-
-

Now we have: $\{K_j,k_t\}\in\mathcal{X}_C\times\mathcal{X}_N$ ${Q_i, q_i} \in \mathcal{X}_C \times \mathcal{X}_N$

We should construct a kernel on the tensor product space $\mathcal{X}_C \times \mathcal{X}_N$

 $\kappa_{\rm B}$: a valid kernel in the cluster-level space χ _C \times χ _N

$\kappa_{\rm B}$: a valid kernel in the cluster-level space χ _C \times χ _N

We mainly consider two options for κ_B

 $\kappa_{\rm B}$: a valid kernel in the cluster-level space $\mathcal{X}_{C}\times\mathcal{X}_{N}$

We mainly consider two options for κ_B \triangleright tensor product of κ_C and κ_N

 $\kappa_{\rm B}$: a valid kernel in the cluster-level space $\mathcal{X}_{C}\times\mathcal{X}_{N}$

We mainly consider two options for κ_B \triangleright tensor product of κ_C and κ_N \triangleright Convex linear combination of κ_C and κ_N

 $\kappa_{\rm B}$: a valid kernel in the cluster-level space $\mathcal{X}_{C}\times\mathcal{X}_{N}$

We mainly consider two options for κ_B \triangleright tensor product of κ_C and κ_N \triangleright Convex linear combination of κ_C and κ_N

Refer to the paper for more details.

Our proposed Node-to-Cluster Attention

- 1. Approximately homogenous cluster representations
- 2. Loss of fine-grained node-level information

Our Method:

- 1. Adaptive fusion of cluster-level and node-level information (subsection 3.3)
- 2. Maintain linear computational complexity (subsection 3.2)

• Using the kernelized softmax trick

• Using the kernelized softmax trick, but with a combined kernel!

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

$$
\text{N2C-Attn-T}(X)_i = \frac{\sum_j \mathbf{A}_{i,j}^P}{\sum_j \mathbf{A}_{i,j}^P}
$$

 $\sum_{j}\sum_{t}\mathbf{C}_{tj}\kappa_{C}\left(Q_{i},K_{j}\right)\kappa_{N}\left(q_{i},k_{t}\right)v_{t}, \ P_{i,j}\sum_{t}\mathbf{C}_{tj}\kappa_{C}\left(Q_{i},K_{j}\right)\kappa_{N}\left(q_{i},k_{t}\right)$

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

$$
\frac{\sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) \kappa_{N} (q_{i}, k_{t}) v_{t}}{\sum_{j} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) \kappa_{N} (q_{i}, k_{t})}
$$
\n
$$
\frac{\sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) (\psi(q_{i})^{T} \psi(k_{t})) v_{t}}{\sum_{j} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) (\psi(q_{i})^{T} \psi(k_{t}))}
$$

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

$$
\frac{\sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_i, K_j) \kappa_{N} (q_i, k_t) v_t}{\sum_{j} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_i, K_j) \kappa_{N} (q_i, k_t)} \n\frac{\sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_i, K_j) (\psi(q_i)^T \psi(k_t)) v_t}{\sum_{j} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_i, K_j) (\psi(q_i)^T \psi(k_t))} \n\frac{\sum_{j} \mathbf{A}_{i,j}^P \kappa_{C} (Q_i, K_j) \sum_{t} \mathbf{C}_{tj} \psi(k_t) v_t}{\sum_{j} \mathbf{A}_{i,j}^P \kappa_{C} (Q_i, K_j) \sum_{t} \mathbf{C}_{tj} \psi(k_t)}
$$

- Using the kernelized softmax trick, but with a combined kernel!
-

Sum the key and value within every cluster according to the Cluster Assignment Matrix C

Calculate the cluster-wise similarity as the Edge Gate for message propagation among clusters

 $\frac{\psi(q_i)^T\sum_j A_{i,j}^P \kappa_C(Q_i,K_j)}{\psi(q_i)^T\sum_j A_{i,j}^P \kappa_C(Q_i,K_j)} \frac{\sum_t \mathbf{C}_{tj}\psi(k_t)}{\sum_t \mathbf{C}_{tj}\psi(k_t)}$

• Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

$$
\frac{\partial v_t}{\partial t} \quad \frac{\psi(q_i)^T \sum_j A_{i,j}^P \kappa_C(Q_i, K_j) \sum_t \mathbf{C}_{tj} \psi(k_t) v_t}{\psi(q_i)^T \sum_j A_{i,j}^P \kappa_C(Q_i, K_j) \sum_t \mathbf{C}_{tj} \psi(k_t)}
$$

Finally each cluster unpacking the aggregated keys and values with its own query.

 $\frac{\psi(q_i)^T\sum_j A_{i,j}^P \kappa_C(Q_i,K_j)\sum_t \mathbf{C}_{tj}\psi(k_t)v_t}{\psi(q_i)^T\sum_j A_{i,j}^P \kappa_C(Q_i,K_j)\sum_t \mathbf{C}_{tj}\psi(k_t)}$

- Using the kernelized softmax trick, but with a combined kernel!
-

• Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

Make it more Efficient

This process can be implemented as cluster-wise message propagation with PyG/DGL…

Refer to the paper for more details.

• Visualization of weight of the cluster-level kernel during the training process

- Visualization of weight of the cluster-level kernel during the training process
	- For social network datasets, N2C-Attn prefers cluster-level information
	- For biology datasets, N2C-Attn balances its attention more equally between both granularities

• Comparison of attention strategies with different granularities

- Comparison of attention strategies with different granularities
	- We find that the variants that combine attention from both levels significantly surpass those that do not.

