Cluster-wise Graph Transformer with Dual-granularity Kernelized Attention

Siyuan Huang · Yunchong Song · Jiayue Zhou · Zhouhan Lin

An illustrative example of Node Clustering Pooling

Input Graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

An illustrative example of Node Clustering Pooling

MP: Message Propagation

Input Graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

An illustrative example of Node Clustering Pooling

MP: Message Propagation

Input Graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

Pooled Graph

$$\mathcal{G}'=(\mathcal{V}',\mathcal{E}')$$

An illustrative example of Node Clustering Pooling

MP: Message Propagation

 $\mathcal{G}=(\mathcal{V},\mathcal{E})$

 $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$

An illustrative example of Node Clustering Pooling

MP: Message Propagation

Input Graph

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

Pooled Graph

$$\mathcal{G}'=(\mathcal{V}',\mathcal{E}')$$

Pooled Graph

$$\mathcal{G}''=(\mathcal{V}'',\mathcal{E}'')$$

An illustrative example of Node Clustering Pooling

An illustrative example of Node Clustering Pooling

Cluster Assignment + Graph Coarsening

An illustrative example of Node Clustering Pooling

Cluster Assignment + Graph Coarsening

compressing each cluster into a single embedding

Graph Coarsening Pipeline leads to some problems when performing MP:

- overly homogeneous cluster representations
- loss of node-level information
- > Can we avoid reducing each cluster to a single node?
- > We can envision the graph as a network of interconnected node sets.

Input Graph $\{m{X}, m{A}\}$

Node Clustering

Input Graph {X, A}

Node Clustering

Compressing each cluster into a single embedding

Graph Coarsening Pipeline

Node-wise interaction:

GNN, Graph Transformer...

We need a method that captures information at both the node and cluster levels.

We need a method that captures information at both the node and cluster levels.

Node-to-Cluster Attention Mechanism

- a) individual node feature
- b) collective feature of its cluster

- a) individual node feature
- b) collective feature of its cluster

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N
Queries of clusters		
Keys of nodes		

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N
Queries of clusters		
Keys of nodes		

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N
Queries of clusters		
Keys of nodes		$\left[k_{1},k_{2},k_{3},k_{4},k_{5},k_{6},k_{7},k_{8},k_{9} ight]$

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level ${\mathcal X}$	N	$\{ , k_1 \}$	$\{ ,k_2\} \ \{$	$\{ , k_3 \}$		
Queries of clusters		q_1,q_2,q_3	corresp	onding query			$\{ , k_6 \}$	$\{ ,k_7 \}$
Keys of nodes		$k_1, k_2, k_3, k_4, k_5, k_6, \;$	k_7,k_8,k_9		0	0	$\{ ,k_8 \}$	$\{ ,k_9 \}$
					$\{ , k_4 \}$	$\{ , k_5 \}$, 03	(,))

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster, denoted by cluster-level key: $K_j \in \mathcal{X}_C$

	Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level ${\mathcal X}$	N	$\{ , k_1 \}$	$\{ ,k_2 \}$	$\{ k_3 \}$		
,	Queries of clusters		q_1,q_2,q_3	corresp	onding query			$\{ , k_6 \}$	$\{ ,k_7 \}$
	Keys of nodes		$k_1, k_2, k_3, k_4, k_5, k_6, \\$	k_7,k_8,k_9		0	0	$\{ ,k_8 \}$	$\{,k_9\}$
						$\{ , k_4 \}$	$\{ k_5 \}$		

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster, denoted by cluster-level key: $K_j \in \mathcal{X}_C$

	Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N	V		$\{K_1,k_1$	$\{K_1, k_2\}$	$\{K_1,k_3\}$		
,	Queries of clusters		q_1,q_2,q_3	corresp	onding	gquery			$\{\kappa_3,\kappa_6\}$	$\{K_3, k_7\}$
	Keys of nodes	K_1,K_2,K_3	$k_1,k_2,k_3,k_4,k_5,k_6,k_6$	k_7,k_8,k_9			O	0	$\{K_3,k_8\}$	$\{K_3,k_9\}$
							$\{K_2,k_4\}$	$\{K_2,k_5\}$	C 0, 0)	(0, 0)

- a) individual node feature, denoted by node-level key: $k_t \in \mathcal{X}_N$
- b) collective feature of its cluster, denoted by cluster-level key: $K_j \in \mathcal{X}_C$

	Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N	$\{K_1, k_1\} \{K_1, k_2\} \{K_1, k_3\}$		$\left(\begin{array}{cccc} O & O \\ (K_{1}, k_{2}) & (K_{2}, k_{3}) \end{array}\right)$
>	Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3 corres	onding query		$\{K_3, k_6\}$ $\{K_3, k_7\}$
	Keys of nodes	K_1,K_2,K_3	$k_1,k_2,k_3,k_4,k_5,k_6,k_7,k_8,k_9$			$\{K_3, k_8\} \ \{K_3, k_9\}$
				$\{K_2, k_4\} \{K_2, k_5\}$		

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

	Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N	$\{K_1, k_1\} \{K_1, k_2\} \{K_1, k_3\}$	O O
5	Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3 corresp	onding query	$\{K_3, k_6\}$ $\{K_3, k_7\}$
	Keys of nodes	K_1,K_2,K_3	$k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9$		$\{K_3, k_8\} \ \{K_3, k_9\}$
				$\{K_2,k_4\} \ \ \{K_2,k_5\}$	

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N	$\{K_1,k_1\}$	$\{K_1,k_2\}$	$\{K_1,k_3\}$	$\left(\begin{array}{c} V \\ V \end{array} \right)$	$\left(\begin{array}{c} V & h_{1} \end{array} \right)$
Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3 corresp	onding query			$\{K_3, k_6\}$	$\{K_3,k_7\}$
Keys of nodes	K_1,K_2,K_3	$oxed{k_1,k_2,k_3,k_4,k_5,k_6,k_7,k_8,k_9}$		0	0	$\{K_2,k_8\}$	$\{K_3, k_9\}$
			-	$\{K_2,k_4\}$	$\{K_2,k_5\}$		

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

 κ_N : a valid kernel in the cluster-level space \mathcal{X}_N

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N	$\{K_1, k_1\} \{K_1, k_2\} \{K_1, k_3\}$	$\left(\begin{array}{cccc} O & O \\ (K_{1}, I_{2}) & (K_{2}, I_{2}) \end{array}\right)$
Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3 corresp	onding query	$\{K_3, k_6\}$ $\{K_3, k_7\}$
Keys of nodes	K_1,K_2,K_3	$k_1,k_2,k_3,k_4,k_5,k_6,k_7,k_8,k_9$		$\{K_3, k_8\} \ \{K_3, k_9\}$
			$\{K_2,k_4\}$ $\{K_2,k_5\}$	

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

 κ_N : a valid kernel in the cluster-level space \mathcal{X}_N

Now we have:

$$\{K_j, k_t\} \in \mathcal{X}_C \times \mathcal{X}_N$$
$$\{Q_i, q_i\} \in \mathcal{X}_C \times \mathcal{X}_N$$

	Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N	$\{K_1, k_1\} \ \{K_1, k_2\} \ \{K_1, k_3\}$	
,	Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3 corres	onding query	$\{K_3, k_6\}$ $\{K_3, k_7\}$
	Keys of nodes	K_1,K_2,K_3	$k_1,k_2,k_3,k_4,k_5,k_6,k_7,k_8,k_9$		$\{K_3, k_8\} \ \{K_3, k_9\}$
				$\{K_2,k_4\}$ $\{K_2,k_5\}$	

Having obtained the bi-level queries and keys, we consider how to measure their similarity.

 κ_C : a valid kernel in the cluster-level space \mathcal{X}_C

 κ_N : a valid kernel in the cluster-level space \mathcal{X}_N

Now we have:

$$\{K_j, k_t\} \in \mathcal{X}_C \times \mathcal{X}_N$$
$$\{Q_i, q_i\} \in \mathcal{X}_C \times \mathcal{X}_N$$

We should construct a kernel on the tensor product space $\mathcal{X}_C \times \mathcal{X}_N$

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N		
Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3 corres	ponding query	$\{K_3, k_6\}$ $\{K_3, k_7\}$
Keys of nodes	K_1,K_2,K_3	$k_1,k_2,k_3,k_4,k_5,k_6,k_7,k_8,k$		$\{K_3, k_8\} \ \{K_3, k_9\}$
			$\{K_2,k_4\}$ $\{K_2,k_5\}$	

 $\kappa_{
m B}$: a valid kernel in the cluster-level space $~\mathcal{X}_{C} imes\mathcal{X}_{N}$

 $\kappa_{
m B}$: a valid kernel in the cluster-level space $~\mathcal{X}_{C} imes\mathcal{X}_{N}$

We mainly consider two options for $\kappa_{
m B}$

How to design the Node-to-Cluster Attention Mechanism?

 $\kappa_{
m B}$: a valid kernel in the cluster-level space $~\mathcal{X}_{C} imes\mathcal{X}_{N}$

We mainly consider two options for $\kappa_{
m B}$

 \succ tensor product of κ_C and κ_N

How to design the Node-to-Cluster Attention Mechanism?

 $\kappa_{
m B}$: a valid kernel in the cluster-level space $~\mathcal{X}_{C} imes\mathcal{X}_{N}$

We mainly consider two options for κ_{B}

- \succ tensor product of κ_C and κ_N
- \blacktriangleright Convex linear combination of κ_C and κ_N

How to design the Node-to-Cluster Attention Mechanism?

 $\kappa_{
m B}$: a valid kernel in the cluster-level space $~\mathcal{X}_{C} imes\mathcal{X}_{N}$

We mainly consider two options for $\kappa_{
m B}$

- \succ tensor product of κ_C and κ_N
- \succ Convex linear combination of κ_C and κ_N

Refer to the paper for more details.

Our proposed Node-to-Cluster Attention

Cluster Assignment Matrix $oldsymbol{C}$

Graph Coarsening Pipeline:

- 1. Approximately homogenous cluster representations
- 2. Loss of fine-grained node-level information

Our Method:

- 1. Adaptive fusion of cluster-level and node-level information (subsection 3.3)
- 2. Maintain linear computational complexity (subsection 3.2)

Bi-level Q & K	Cluster-level \mathcal{X}_C	Node-level \mathcal{X}_N
Queries of clusters	Q_1,Q_2,Q_3	q_1,q_2,q_3
Keys of nodes	K_1,K_2,K_3	$k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9$

Using the kernelized softmax trick

Using the kernelized softmax trick, but with a combined kernel!

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

N2C-Attn-T(X)_i =
$$\frac{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) \kappa_{N} (q_{i}, k_{t}) v_{t}}{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) \kappa_{N} (q_{i}, k_{t})}$$

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

N2C-Attn-T(X)_i =
$$\frac{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C}(Q_{i}, K_{j}) \kappa_{N}(q_{i}, k_{t}) v_{t}}{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C}(Q_{i}, K_{j}) \kappa_{N}(q_{i}, k_{t})}$$

$$= \frac{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C}(Q_{i}, K_{j}) \left(\psi(q_{i})^{T} \psi(k_{t})\right) v_{t}}{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C}(Q_{i}, K_{j}) \left(\psi(q_{i})^{T} \psi(k_{t})\right)}$$

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

$$N2C-Attn-T(X)_{i} = \frac{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) \kappa_{N} (q_{i}, k_{t}) v_{t}}{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) \kappa_{N} (q_{i}, k_{t})}$$

$$= \frac{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) (\psi(q_{i})^{T} \psi(k_{t})) v_{t}}{\sum_{j} \mathbf{A}_{i,j}^{P} \sum_{t} \mathbf{C}_{tj} \kappa_{C} (Q_{i}, K_{j}) (\psi(q_{i})^{T} \psi(k_{t}))}$$

$$= \frac{\psi(q_{i})^{T} \sum_{j} \mathbf{A}_{i,j}^{P} \kappa_{C} (Q_{i}, K_{j}) \sum_{t} \mathbf{C}_{tj} \psi(k_{t}) v_{t}}{\psi(q_{i})^{T} \sum_{j} \mathbf{A}_{i,j}^{P} \kappa_{C} (Q_{i}, K_{j}) \sum_{t} \mathbf{C}_{tj} \psi(k_{t})}$$

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

- Using the kernelized softmax trick, but with a combined kernel!
- Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

This process can be implemented as cluster-wise message propagation with PyG/DGL... Refer to the paper for more details.

Visualization of weight of the cluster-level kernel during the training process

- Visualization of weight of the cluster-level kernel during the training process
 - For social network datasets, N2C-Attn prefers cluster-level information
 - For biology datasets, N2C-Attn balances its attention more equally between both granularities

Comparison of attention strategies with different granularities

- Comparison of attention strategies with different granularities
 - We find that the variants that combine attention from both levels significantly surpass those that do not.

Thanks