DLSR

Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection

21.5% AUROC increase

Compared to DDPM (Pixel level)

FASTER 100x

faster than pixel level

Ying Yang¹, De Cheng^{1†}, Chaowei Fang^{1†}, Yubiao Wang¹, Changzhe Jiao¹, Lechao Cheng², Nannan Wang¹, Xinbo Gao³

NeurIPS 2024

tart EASIER

os_simTo Follow

osine g

Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection

Ying Yang¹, De Cheng^{1†}, Chaowei Fang^{1†}, Yubiao Wang¹, Changzhe Jiao¹, Lechao Cheng², Nannan Wang¹, Xinbo Gao³

Motivation:

Improving the reconstruction power of the generative model, while keeping compact representation of the ID data

NeurIPS 2024

DLSR

Encounter issues with assigning high softmax probability to OOD samples

Fail to **capture sample distribution** accurately.

Significantly **high training and inference time costs.**

NeurIPS 2024

Proposed Method: DLSR--(Feature-Gen Based)

DLSR

- We propose a diffusion-based layer-wise semantic reconstruction framework to tackle OOD detection, based on multi-layer semantic feature distortion and reconstruction. Meanwhile, We are the first to successfully incorporate generative modeling of features within the framework of OOD detection in image classification tasks.
- The layer-wise semantic feature reconstruction encourages restricting the in-distribution latent features to be more compactly distributed within a certain space, enabling better reconstruction of ID samples while limiting the reconstruction of OOD samples.
- Extensive experiments on multiple benchmarks across various datasets show that our method achieves state-of-the-art detection accuracy and speed.

DLSR--Our Method

3. Mean Squared Eror (MSE), Likelihood Regrat metric, Muiti-layer Semantic Feature Similarity (MFsim):

 $LR = MSE_{initial} - MSE_{final} \quad Sim(\overline{\mathbf{f}}^m, \widetilde{\mathbf{f}}^m) = \frac{\mathbf{f}^m \cdot \mathbf{f}^m}{\|\overline{\mathbf{f}}^m\| \cdot \|\widetilde{\mathbf{f}}^m\|}$

Experimental & Visualization Results

DLSR

Dataset		Pixel-Generative-Base				Feature-Generative-Base			
ID	OOD	GLOW	PixelCNN++	VAE	DDPM	AutoEncoder	our(+MSE)	ours(+LR)	ours(+MFsim)
CIFRA10	SVHN	88.3	73.7	95.9	97.3	57.7	97.3±0.0	98.2 ± 0.0	98.9±0.1
	LSUN	21.3	64.0	40.3	68.2	81.5	97.6 ± 0.1	97.8 ± 0.1	99.8±0.1
	MNIST	85.8	96.7	99.9	83.2	95.8	99.4 ± 0.0	98.9 ± 0.1	99.9±0.0
	FMNIST	71.2	90.7	99.1	84.3	79.6	99.0 ± 0.0	$98.8 {\pm} 0.0$	99.9±0.0
	KMNIST	38.0	82.6	99.9	89.7	90.5	99.5 ± 0.0	99.1 ± 0.0	99.9±0.0
	Omniglot	95.5	98.9	99.6	35.9	81.5	99.1 ± 0.1	97.1 ± 0.1	99.9±0.0
	NotMNIST	53.9	82.6	99.4	88.7	81.6	99.8 ± 0.1	99.5 ± 0.0	99.9±0.0
	average	64.9	84.2	90.6	78.2	81.2	98.8±0.1	98.5±0.1	99.7±0.1
Time	Num img/s (†)	38.6	19.3	0.7	11.4	1224.2	999.3	273.6	999.3

Dataset		Pixel-Generative-Based		Feature-Generative-Based				
ID	OOD	VAE	DDPM	AutoEncoder	ours(+MSE)	ours(+LR)	ours(+MFsim)	
CelebA	SUN	95.89	83.41	32.90	99.98±0.01	$97.15 {\pm} 0.02$	99.98±0.01	
	iNaturalist	95.52	82.38	41.56	100 + 0.00	$99.96 {\pm} 0.01$	$99.99 {\pm} 0.00$	
	Textures	91.73	78.33	56.33	$99.93 {\pm} 0.02$	$98.51 {\pm} 0.02$	99.96±0.01	
	Places365	97.58	76.25	35.90	$99.96 {\pm} 0.01$	$97.47 {\pm} 0.03$	99.98±0.00	
	average	95.18	80.09	41.67	$99.97 {\pm} 0.01$	$98.27{\pm}0.02$	99.98±0.01	
Time	Num img/s (†)	18.7	10.2	1357.6	1033.8	290.4	1033.8	

Figure 10: Examples of ID Samples Misclassified as OOD (Lacking Semantic Information).

Figure 11: Examples of OOD Samples Misclassified as ID (Similar to ID Sample Categories).

Figure 12: Examples of OOD Samples Misclassified as ID (Similar to ID Sample Colors).

Our method **achieves 20.4% higher AUROC** than DDPM. This indirectly indicates that performing OOD detection at the pixel level is much worse than performing OOD detection at the feature level.

Compare Classification-based and Distance-based Methods

				OOD						
ID	Based	Method	Num img/s (\uparrow)	SVHN	LSUN-c	LSUN-r	iSUN	Textures	Places365	average
	a 10 1	MSP	1060.5	94.53	96.37	91.80	92.23	95.93	97.59	94.74
		EBO	1060.5	96.79	97.34	94.42	94.64	96.30	98.34	96.31
	Classifier-based	DICE	1066.3	98.53	99.03	94.49	95.25	97.68	99.63	97.44
		ASH-S	1047.6	98.01	98.23	93.17	94.13	97.01	98.48	96.51
CIEAR10	Distance-based	SimCLR+Mahalanobis	674.8	97.80	73.61	69.28	88.63	76.47	67.42	78.87
		SimCLR+KNN	919.8	92.40	92.05	89.81	90.14	97.24	94.36	92.67
	Generative-based	ours(+MSE)	960.6	97.31±0.02	$97.59 {\pm} 0.01$	93.93±0.01	92.78±0.01	$100{\pm}0.00$	99.96±0.00	96.93±0.01
		ours(+LR)	360.2	98.22 ± 0.02	$97.84 {\pm} 0.02$	$95.37 {\pm} 0.01$	$94.31 {\pm} 0.02$	$100{\pm}0.00$	$99.91 {\pm} 0.01$	97.61 ± 0.02
		ours(+MFsim)	960.6	98.89±0.01	99.83±0.02	98.83±0.01	98.52±0.02	$100{\pm}0.00$	$100{\pm}0.00$	99.34±0.01
		MSP	1060.5	77.56	84.03	72.09	71.52	90.02	89.00	80.70
CIFAR100	Classifier-based	EBO	1060.5	76.51	81.59	78.92	76.38	79.38	83.07	79.31
		DICE	1066.3	86.93	88.54	71.97	71.29	92.83	90.78	83.72
		ASH-S	1047.6	92.11	90.03	63.30	65.12	95.25	92.99	83.13
	Distance-based	SimCLR+Mahalanobis	674.8	56.24	52.23	61.34	73.53	71.92	51.98	61.21
		SimCLR+KNN	919.8	54.37	51.49	83.80	77.21	53.31	54.43	62.44
		ours(+MSE)	960.6	83.93±0.01	86.86±0.01	75.38±0.01	71.99 ± 0.02	99.99±0.00	99.97±0.01	86.35±0.01
	Generative-based	ours(+LR)	360.2	$88.84{\pm}0.01$	$87.60 {\pm} 0.02$	$80.96 {\pm} 0.01$	77.71 ± 0.02	$99.98 {\pm} 0.01$	99.92 ± 0.02	89.17±0.01
		ours(+MFsim)	960.6	93.90±0.01	99.14±0.01	95.74±0.01	$94.40{\pm}0.01$	$100{\pm}0.00$	$100{\pm}0.00$	97.20±0.01

Specifically, for CIFAR-100 as the in-distribution dataset, our method integrated with MFsim achieves an average AUROC of 13.84% higher than the classification-based method DICE. Moreover, unlike classification-based methods, our approach does not require labeled data.

DLSR

Ablation Study:

Figure 3: The MFsim score distributions of **the first epoch (left)** and **the last epoch (right)**

Figure4:

The average AUROC and FPR95 for the three metrics are evaluated at **different sampling time steps**.

Table 4: Changes in Average AUROC Across Six Datasets listed in Table 3 for CIFAR100 as ID.

Metrics	MSE		I	L.R	MFsim		
Linear	Linear=720	Linear=1440	Linear=720	Linear=1440	Linear=720	Linear=1440	
Average	83.35	86.35	84.05	89.17	96.43	97.20	
Number of Blocks	Number=8	Number=16	Number=8	Number=16	Number=8	Number=16	
Average	85.26	86.35	87.32	89.17	97.13	97.20	

Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection

Ying Yang¹, De Cheng^{1†}, Chaowei Fang^{1†}, Yubiao Wang¹, Changzhe Jiao¹, Lechao Cheng², Nannan Wang¹, Xinbo Gao³

