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Motivation:
Improving the reconstruction power of the generative model, while 

keeping compact representation of the ID data
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Distance Based

Classification Based

Pixel-Gen Based

Encounter issues with 
assigning high softmax 
probability to OOD 
samples 

Fail to capture sample 
distribution accurately. 

Significantly high training 
and inference time costs. 
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Proposed Method: 
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• We propose a diffusion-based layer-wise semantic reconstruction framework to tackle OOD detection, based on multi-layer 
semantic feature distortion and reconstruction. Meanwhile, We are the first to successfully incorporate generative modeling 
of features within the framework of OOD detection in image classification tasks. 

• The layer-wise semantic feature reconstruction encourages restricting the in-distribution latent features to be more compactly 
distributed within a certain space, enabling better reconstruction of ID samples while limiting the reconstruction of OOD 
samples. 

• Extensive experiments on multiple benchmarks across various datasets show that our method achieves state-of-the-art 
detection accuracy and speed. 



p4

NeurIPS 2024

Loss:

3. Mean Squared Eror (MSE), Likelihood Regrat metric, Muiti-layer Semantic Feature Similarity (MFsim ):

2. Diffusion-based Feature Distortion and Reconstruction1. Multi-layer Semantic Feature Extraction

DLSR--Our Method



Experimental & Visualization Results
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Our method achieves 20.4% higher AUROC than DDPM. This indirectly indicates that performing OOD detection at 
the pixel level is much worse than performing OOD detection at the feature level.
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Compare
Classification-based and Distance-based Methods
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Specifically, for CIFAR-100 as the in-distribution dataset, our method integrated with MFsim achieves
an average AUROC of 13.84% higher than the classification-based method DICE. Moreover, unlike

classification-based methods, our approach does not require labeled data.
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Ablation Study:
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Figure 3: 
The MFsim score distributions of the first epoch (left) and 
the last epoch (right)

Figure4: 
The average AUROC and FPR95 for the three metrics are evaluated at 
different sampling time steps. 

Table 4: Changes in Average AUROC Across Six Datasets listed in Table 3 for CIFAR100 as ID.
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