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C AASI CASIAMotivation

• MTRL enhances generalization by leveraging the information inherent in potentially related tasks.
• In addition to information sharing via network parameters, agents can also share via explicit policies.
• For humans, someone who can ride a bicycle can quickly learn to ride a motorcycle by referring to related

skills, such as operating controls, maintaining balance, and executing turns.
• Similarly, full or partial policy sharing is also evident in robotic arm manipulation tasks.
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C AASI CASIACross-Task Policy Guidance
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• Instead of each task generating trajectories constantly by its corresponding control policy, we consider
using control policies of other tasks to generate training data for the current task when appropriate.

• For task 1, its guide policy 𝚷𝟏
𝒈 selects a policy 𝝅′ from the candidate set {𝝅𝒊}𝒊$𝟏𝑵 every K timesteps. It then

uses 𝝅& as the behavior policy to interact with the environment and collect data for next K timesteps.
• CTPG alters only the data collection process, without explicitly changing the training process.
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C AASI CASIAGuide Policy

• The trajectory generation process can be summarized as:

• Guide policy 𝚷𝒊
𝒈(𝒋𝒕|𝒔𝒕) of task 𝒊 outputs a task index 𝒋𝒕 ∈ 𝑻, meaning using 𝝅𝒋𝒕 as the behavior policy.

• The guide Q-value function is 𝑸𝒊
𝒈 𝒔𝒕, 𝒋𝒕 with its Bellman equation defined as:

• Reward function 𝑹𝒊
𝒈 is defined as the expected cumulative discount rewards:

• Hindsight Off-Policy Correction. The guide policy faces a non-stationary challenge during off-policy 
training. We reassign the action 𝒋𝒕 sampled by the past guide policy to a new one 𝒋𝒕& , whose control policy 
𝝅𝒋𝒕" is more likely to output the historical action sequence 𝒂𝒕" 𝒕"$𝒕

𝒕)𝑲+𝟏.
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C AASI CASIA

• Some control policies perform even worse than the current task’s own control policy 𝝅𝒊.

• The trajectory generation solely using 𝝅𝒊 can be regarded as equipped with a special guide policy 𝚷𝒊
,𝒈

that exclusively selects 𝝅𝒊 as the behavior policy.

Not All Policies Are Beneficial for Guidance

• We design a Policy-Filter Gate serving as a mask vector 𝒎 𝒔𝒕
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C AASI CASIA

• The easy tasks allow for the quick acquisition of some effective skills, which is helpful in exploring other 
tasks. However, they do not need additional guidance; instead, they focus on solidifying these skills.

• We design Guide-Block Gate to prevent guide policy from engaging in tasks that do not necessitate 
guidance. We form the tasks that require guidance into a subset 𝕋𝒈 with SAC’s temperature 𝜶𝒊. 

Not All Tasks Need Guidance

• For difficult tasks 𝑖-.//, their control policy entropies 𝐻(𝜋0#$%% (· |𝑠1)) tend to be high, and the corresponding 
temperature parameters 𝛼0#$%% decrease according to SAC’s automatic temperature adjustment. 

Conversely, the temperature parameters 𝛼0&'() increase for easy tasks 𝑖2345. Therefore, 𝛼0 is a metric 
reflecting the relative difficulty and mastery of different tasks.

• We also considered using task success rate directly as a metric, and compared it in our experiments.
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C AASI CASIACross-Task Policy Guidance
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Here is the illustration of the comprehensive CTPG framework. Initially, the guide-block gate selectively
provides guidance on tasks 𝑖 ∈ 𝕋6. Subsequently, the policy-filter gate generates a mask 𝑚 to sift through
the beneficial policies. Finally, the policy chosen by the guide policy or the control policy of the current task
itself interacts with the environment over 𝐾 timesteps to collect training data.
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C AASI CASIAExperiments: Quantitative Result
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C AASI CASIAExperiments: Guidance Learned by Guide Policy

• We visualize one of the sampled trajectories of Task Pick-Place on MetaWorld-MT10.
• Pick-Place and Peg-Insert-Side employ a shared policy directing the robotic arm to target object.
• Button-Press-Topdown raises the gripper and then Drawer-Close moves forward.
• In the middle 10 timesteps, the probability of Pick-Place is notably high due to the absence of 

alternative shared policies at this stage.

Timestep: 0 10 20 30 40 50

Peg-Insert-Side Peg-Insert-Side Pick-Place Button-Press-Topdown Drawer-Close

Guide Policy
Output:

Behavior Policy:

7.1%   Button-Press-Topdown

36.1%   Pick-Place

24.2%   Drawer-Close

  Drawer-Close 9.7% 

30.6%   Pick-Place

30.1%   Button-Press-Topdown

0.7%   Peg-Insert-Side

94.5%   Pick-Place

1.7%   Push  Peg-Insert-Side 20.5% 

  Pick-Place 36.9% 

9.6%   Push

  Peg-Insert-Side 30.2% 

  Push 15.6% 

  Pick-Place 21.4% 
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C AASI CASIAOther Experiments

• CTPG improves performance without implicit knowledge sharing methods.
• We split the original task set in half, pre-training expert policies on the one half. While learning the 

other half, CTPG with expert policies can expedite the exploration of new tasks effectively.
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