Efficient Multi-Task Reinforcement Learning with Cross-Task Policy Guidance

The 38th Conference on Neural Information Processing Systems

Jinmin He, Kai Li* , Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing*, Jian Cheng

{hejinmin2021, kai.li, zangyifan2019, jian.cheng}@ia.ac.cn, {haobofu, leonfu}@tencent.com, jlxing@tsinghua.edu.cn

(a) *Button-Press* v.s. *Drawer-Close* (b) *Door-Open* v.s. *Drawer-Open*

- MTRL enhances generalization by leveraging the information inherent in potentially related tasks.
- In addition to information sharing via network parameters, agents can also share via explicit policies.
- For humans, someone who can ride a bicycle can quickly learn to ride a motorcycle by referring to related skills, such as operating controls, maintaining balance, and executing turns.
- Similarly, full or partial policy sharing is also evident in robotic arm manipulation tasks.

Cross-Task Policy Guidance

- Instead of each task generating trajectories constantly by its corresponding control policy, we consider using control policies of other tasks to generate training data for the current task when appropriate.
- For task 1, its guide policy Π^g_1 selects a policy π' from the candidate set $\{\pi_i\}_{i=1}^N$ every K timesteps. It then uses π' as the behavior policy to interact with the environment and collect data for next K timesteps.
- CTPG alters only the data collection process, without explicitly changing the training process.

Guide Policy CASIA CASIA

- Guide policy $\Pi_i^g(j_t | s_t)$ of task i outputs a task index $j_t \in T$, meaning using π_{j_t} as the behavior policy.
- The guide Q-value function is $\bm{\mathit{Q}}_i^g(\bm{s_t},\bm{j_t})$ with its Bellman equation defined as:

 $\mathcal{B}^{\Pi_i^g} Q_i^g(s_t, j_t) \triangleq R_i^g(s_t, j_t) + \gamma^K \mathbb{E}_{j_{t+K} \sim \Pi_i^g, s_{t+K} \sim P_i} [Q_i^g(s_{t+K}, j_{t+K})]$

• Reward function R_i^g is defined as the expected cumulative discount rewards:

$$
R_i^g(s_t, j_t) = \mathbb{E}_{a_{t'} \sim \pi_{j_t}, s_{t'+1} \sim P_i} \left[\sum_{t'=t}^{t+K-1} \gamma^{t'-t} R_i(s_{t'}, a_{t'}) \right]
$$

The trajectory generation process can be summarized as:

$$
j_t \sim \Pi_i^g(\cdot|s_t), \qquad a_{t'} \sim \pi_{j_t}(\cdot|s_{t'}), \qquad \text{where } t' \in \{t, t+1, \ldots, t+K-1\}
$$

• *Hindsight Off-Policy Correction.* The guide policy faces a non-stationary challenge during off-policy training. We reassign the action j_t sampled by the past guide policy to a new one j_t^\prime , whose control policy $\bm{\pi_{j'_t}}$ is more likely to output the historical action sequence $\{\bm{a_{t'}}\}_{t'=t}^{t+K-1}.$

$$
j'_{t} = \arg \max_{j} \prod_{t'=t}^{t+K-1} \pi_{j}(a_{t'}|s_{t'}) = \arg \max_{j} \sum_{t'=t}^{t+K-1} \log \pi_{j}(a_{t'}|s_{t'}).
$$

Not All Policies Are Beneficial for Guidance

 $\,Q$

- Some control policies perform even worse than the current task's own control policy π_i .
- The trajectory generation solely using $\pmb{\pi}_i$ can be regarded as equipped with a special guide policy $\Pi_i^{\widetilde{g}}$ that exclusively selects π_i as the behavior policy.

$$
\tilde{g}(s_t, i) = R_i^g(s_t, i) + \gamma^K \mathbb{E}_{s_{t+K} \sim P_i} \left[Q_i^{\tilde{g}}(s_{t+K}, i) \right]
$$
\n
$$
= \mathbb{E}_{a_{t'} \sim \pi_i, s_{t'+1} \sim P_i} \left[\sum_{t'=t}^{t+K-1} \gamma^{t'-t} R_i(s_{t'}, a_{t'}) + \gamma^K Q_i^{\tilde{g}}(s_{t+K}, i) \right]
$$
\n
$$
= \cdots
$$
\n
$$
= \mathbb{E}_{a_{t'} \sim \pi_i, s_{t'+1} \sim P_i} \left[\sum_{t'=t}^{\infty} \gamma^{t'-t} R_i(s_{t'}, a_{t'}) \right]
$$
\n
$$
= V_i(s_t),
$$

• We design a **Policy-Filter Gate** serving as a mask vector $m(s_t)$

$$
m_j(s_t) = \begin{cases} 1, & Q_i^g(s_t, j) \ge V_i(s_t), \\ 0, & Q_i^g(s_t, j) < V_i(s_t), \end{cases}
$$
 for $j \in \{1, 2, ..., N\},$

CASIA CASIA

- The easy tasks allow for the quick acquisition of some effective skills, which is helpful in exploring other tasks. However, they do not need additional guidance; instead, they focus on solidifying these skills.
- We design **Guide-Block Gate** to prevent guide policy from engaging in tasks that do not necessitate guidance. We form the tasks that require guidance into a subset \mathbb{T}^g with SAC's temperature α_i .

$$
\mathbb{T}^g = \left\{ i | \log \alpha_i \leq \frac{1}{N} \sum_{j=1}^N \log \alpha_j \right\}
$$

- For difficult tasks i_{diff} , their control policy entropies $H(\pi_{i_{diff}}(\cdot | s_t))$ tend to be high, and the corresponding temperature parameters $\alpha_{i_{\text{diff}}}$ decrease according to SAC's automatic temperature adjustment. Conversely, the temperature parameters $\alpha_{i_{\rm easy}}$ increase for easy tasks $i_{\rm easy}$. Therefore, α_i is a metric reflecting the relative difficulty and mastery of different tasks.
- We also considered using task success rate directly as a metric, and compared it in our experiments.

Cross-Task Policy Guidance CASIA CASIA

Here is the illustration of the comprehensive CTPG framework. Initially, the guide-block gate selectively provides guidance on tasks $i \in \mathbb{T}^g$. Subsequently, the policy-filter gate generates a mask m to sift through the beneficial policies. Finally, the policy chosen by the guide policy or the control policy of the current task itself interacts with the environment over K timesteps to collect training data.

Experiments: Guidance Learned by Guide Policy CASIA CASIA

- We visualize one of the sampled trajectories of Task *Pick-Place* on *MetaWorld-MT10.*
- *Pick-Place* and *Peg-Insert-Side* employ a shared policy directing the robotic arm to target object.
- *Button-Press-Topdown* raises the gripper and then Drawer-Close moves forward.
- In the middle 10 timesteps, the probability of *Pick-Place* is notably high due to the absence of alternative shared policies at this stage.

- CTPG improves performance without implicit knowledge sharing methods.
- We split the original task set in half, pre-training expert policies on the one half. While learning the other half, CTPG with expert policies can expedite the exploration of new tasks effectively.

Thank You For Your Interest In Our Work

The 38th Conference on Neural Information Processing Systems

