Higher-Order Causal Message Passing for Experimentation with Complex Interference

Mohsen Bayati¹, Yuwei Luo¹, Will Overman¹ Sadegh Shirani¹, and Ruoxuan Xiong²

1. Stanford Graduate School of Business, 2. Emory University

Motivating Example

Without Network Interference With Network Interference

SUTVA (Stable Unit Treatment Values Assumption) fails due to **network interference** (Cox 1958, Rubin 1978, Manski 1990, Imbens and Rubin 2015, Sussman and Airoldi 2017)

Causal Message-passing: Main Theory

• Observation:
$$\boldsymbol{W} = \begin{bmatrix} W_1^1 & \cdots & W_T^1 \\ \vdots & \ddots & \vdots \\ W_1^N & \cdots & W_T^N \end{bmatrix}$$
 and $\boldsymbol{Y}(\boldsymbol{W}) = \begin{bmatrix} Y_1^1(\boldsymbol{W}) & \cdots & Y_T^1(\boldsymbol{W}) \\ \vdots & \ddots & \vdots \\ Y_1^N(\boldsymbol{W}) & \cdots & Y_T^N(\boldsymbol{W}) \end{bmatrix}$

— Outcome model: $\vec{Y}_{t+1}(W) = Ag(\vec{Y}_t(W), \vec{W}_t, X) + \text{noise}$

— Sample mean:
$$v_t^W = \frac{1}{N} \sum_{i=1}^N Y_t^i(W)$$
 and sample variance: $\left(\rho_t^W\right)^2 = \frac{1}{N} \sum_{i=1}^N \left(Y_t^i(W)\right)^2 - \left(v_t^W\right)^2$

Causal-MP Main Theory (informal) Under some regularity assumptions, **state evolution** equation holds.* State Evolution equations $(v_{t+1}^W, \rho_{t+1}^W) = f_t(v_t^W, \rho_t^W, W)$

*Shirani and Bayati. Causal message-passing for experiments with unknown and general network interference. PNAS 121.40 (2024).

Causal Message-passing: Estimation

• Observation:
$$W = \begin{bmatrix} W_1^1 & \cdots & W_T^1 \\ \vdots & \ddots & \vdots \\ W_1^N & \cdots & W_T^N \end{bmatrix}$$
 and $Y(W) = \begin{bmatrix} Y_1^1(W) & \cdots & Y_T^1(W) \\ \vdots & \ddots & \vdots \\ Y_1^N(W) & \cdots & Y_T^N(W) \end{bmatrix}$
• Outcome specification: $\vec{Y}_{t+1}(W) = Ag(\vec{Y}_t(W), \vec{W}_t, X) + \text{noise}$
• Sample mean: $v_t^W = \frac{1}{N} \sum_{i=1}^N Y_t^i(W)$ and sample variance: $(\rho_t^W)^2 = \frac{1}{N} \sum_{i=1}^N (Y_t^i(W))^2 - (v_t^W)^2$

The goal is to estimate f_t using the experimental data.

First-order CMP* $v_{t+1}^W = f_t(v_t^W, W)$

Higher-order CMP[#] $(v_{t+1}^W, \rho_{t+1}^W) = f_t(v_t^W, \rho_t^W, W)$

* Shirani and Bayati. Causal message-passing for experiments with unknown and general network interference. *PNAS* 121.40 (2024). # Bayati, Luo, Overman, Shirani, and Xiong. Higher-Order Causal Message Passing for Experimentation Under Unknown Interference. *NeurIPS* (2024)

Higher-Order Causal Message Passing Framework

- Goal: offer rich flexibility in estimating the unknown state evolution

 $(v_{t+1}^W, \rho_{t+1}^W) = f_t(v_t^W, \rho_t^W, W)$

Feature vector:
$$\vec{x}_t = \vec{\phi}(v_t^W, (\rho_t^W)^2, W) = [\phi_1(v_t^W, (\rho_t^W)^2, W), ..., \phi_K(v_t^W, (\rho_t^W)^2, W)]$$

Proper features facilitate the extraction of informative patterns for learning the unknown state evolution
 Can be chosen based on heuristics, domain knowledge and prior information

Machine learning model: $(\hat{v}_{t+1}^W, (\hat{\rho}_{t+1}^W)^2) = f_{\theta}(\vec{x}_t)$

Regression, MLP, tree-based models, etc.

Higher-Order Causal Message Passing Framework

Examples of HO-CMP algorithms and their feature functions

Algorithms	Feature functions $\{\phi_k(\hat{\nu}_t(\boldsymbol{w}), \hat{\rho}_t(\boldsymbol{w})^2, \boldsymbol{w})\}_{k \in [K]}$	$f_{oldsymbol{ heta}}(\cdot)$
FO-CMP	$\{\hat{ u}_t(oldsymbol{w}),ar{w}_{t+1},\hat{ u}_t(oldsymbol{w})\cdotar{w}_t\}$	linear regression
HO-CMP	$\left\{\hat{ u}_t(oldsymbol{w}),ar{w}_{t+1},\hat{ u}_t(oldsymbol{w})\cdotar{w}_t,\hat{ ho}_t(oldsymbol{w})^2,ar{w}_{t+1}^2 ight\}$	linear regression

FO-CMP: v_{t+1}^W is a linear function of dynamics, treatments, and their interactions

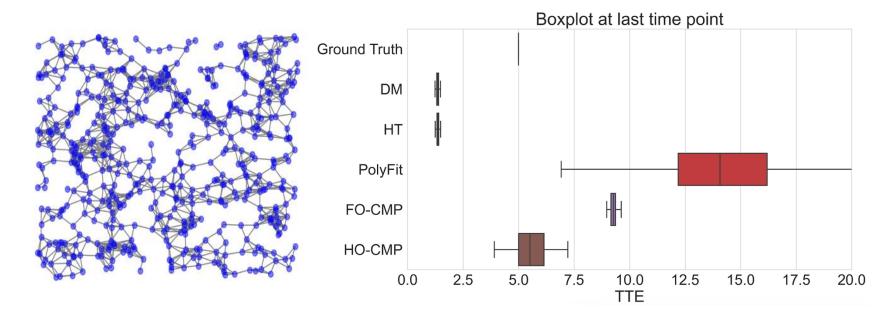
- HO-CMP: introduces higher-order terms to model nonlinear effects

HO-CMP uses the observations of both sample mean and variance, hence modeling their potential interactions and improving the data efficiency

Estimation for Non-monotone Interference Effect

Outcome(node i)= -1 + 0.8 Avg (outcomes of neighbors of i) + $1_{i \text{ is treated}} + \varphi$ (fraction of treated neighbors of i)

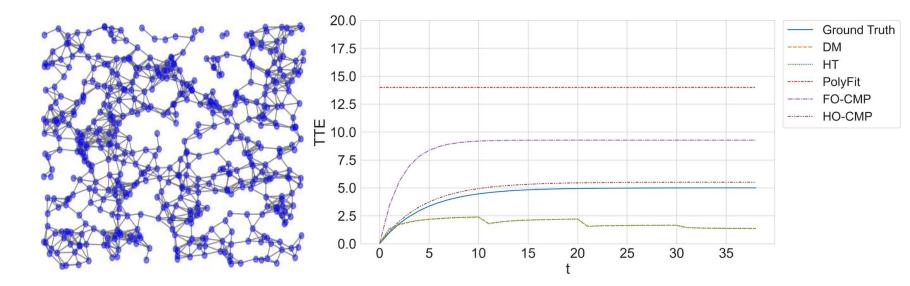
Random geometric graph; $\varphi(x) = \sin(\pi x)$; T = 40



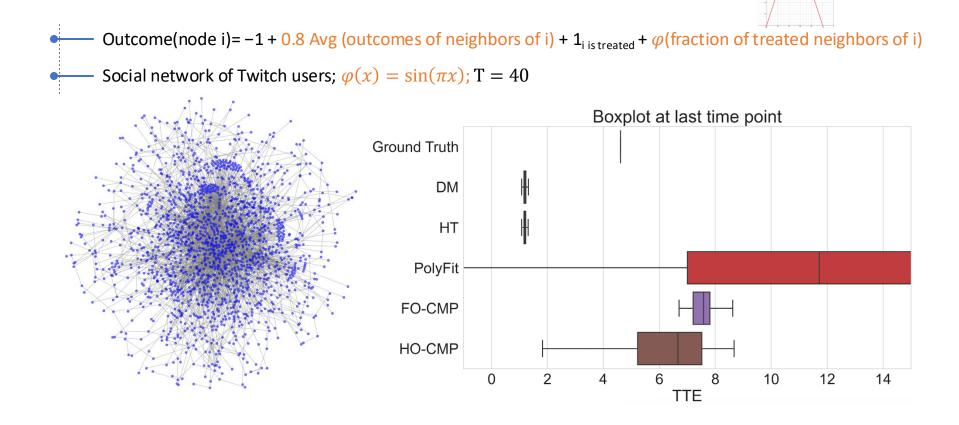
Estimation for Non-monotone Interference Effect

Outcome(node i) = -1 + 0.8 Avg (outcomes of neighbors of i) + $1_{i \text{ is treated}} + \varphi$ (fraction of treated neighbors of i)

Random geometric graph; $\varphi(x) = \sin(\pi x)$; T = 40

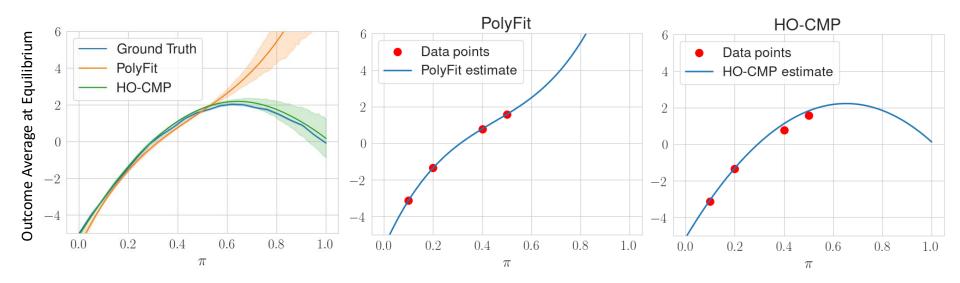


Estimation using Real Network Data (Non-Monotone Effect)



Improved Data Efficiency

Improved data efficiency enables HO-CMP to identify non-monotone effect with non-equilibrium data



Conclusion

HO-CMP:

- A method for estimating causal effects in experiments with unknown and general network interference.
- Efficient data usage using the whole dynamics rather than only the equilibrium
- Estimation robust to effect types (monotone vs. non-monotone) and graph structures (random vs. Twitch graph)

Thank you!

