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Motivating Example

Without Network Interference With Network Interference

SUTVA (Stable Unit Treatment Values Assumption) fails due to network interference
(Cox 1958, Rubin 1978, Manski 1990, Imbens and Rubin 2015, Sussman and Airoldi 2017)

Estimating the causal effect of a proposed treatment:



Causal Message-passing: Main Theory
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Causal-MP Main Theory (informal)
Under some regularity assumptions, state evolution equation holds.*
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*Shirani and Bayati. Causal message-passing for experiments with unknown and general network interference. PNAS 121.40 (2024).



Causal Message-passing: Estimation

Observation: 𝑾 =
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First-order CMP*
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Outcome specification: 𝑌𝑡+1(𝑾) = 𝑨𝑔 𝑌𝑡(𝑾), 𝑊𝑡, 𝑿 + noise 
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* Shirani and Bayati. Causal message-passing for experiments with unknown and general network interference. PNAS 121.40 (2024).

# Bayati, Luo, Overman, Shirani, and Xiong. Higher-Order Causal Message Passing for Experimentation Under Unknown Interference. NeurIPS (2024)

The goal is to estimate 𝑓𝑡 using the experimental data.

Higher-order CMP#
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Higher-Order Causal Message Passing Framework

Goal: offer rich flexibility in estimating the unknown state evolution 𝜈𝑡+1
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Machine learning model: Ƹ𝜈𝑡+1
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𝑊 2 = 𝑓𝜃 Ԧ𝑥𝑡

Proper features facilitate the extraction of informative patterns for learning the unknown state evolution

Can be chosen based on heuristics, domain knowledge and prior information

Regression, MLP, tree-based models, etc. 



Higher-Order Causal Message Passing Framework

Examples of HO-CMP algorithms and their feature functions

FO-CMP: 𝜈𝑡+1
𝑾  is a linear function of dynamics, treatments, and their interactions

HO-CMP: introduces higher-order terms to model nonlinear effects

HO-CMP uses the observations of both sample mean and variance, hence 
modeling their potential interactions and improving the data efficiency 



Estimation for Non-monotone Interference Effect

Outcome(node i)= −1 + 0.8 Avg (outcomes of neighbors of i) + 1i is treated + 𝜑(fraction of treated neighbors of i)

Random geometric graph; 𝜑 𝑥 = sin 𝜋𝑥 ; T = 40 



Estimation for Non-monotone Interference Effect

Outcome(node i)= −1 + 0.8 Avg (outcomes of neighbors of i) + 1i is treated + 𝜑(fraction of treated neighbors of i)

Random geometric graph; 𝜑 𝑥 = sin 𝜋𝑥 ; T = 40 



Estimation using Real Network Data (Non-Monotone Effect) 

Outcome(node i)= −1 + 0.8 Avg (outcomes of neighbors of i) + 1i is treated + 𝜑(fraction of treated neighbors of i)

Social network of Twitch users; 𝜑 𝑥 = sin 𝜋𝑥 ; T = 40 



Improved Data Efficiency

Improved data efficiency enables HO-CMP to identify 
non-monotone effect with non-equilibrium data 
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HO-CMP:

• A method for estimating causal effects in experiments with unknown and general network 

interference.

• Efficient data usage using the whole dynamics rather than only the equilibrium

• Estimation robust to effect types (monotone vs. non-monotone) and graph structures (random 

vs. Twitch graph)

Conclusion



Thank you!
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