

How Does Black-Box Impact the Learning Guarantee

of Stochastic Compositional Optimization?

Jun Chen

Huazhong Agricultural University, Wuhan, China

cj850487243@163.com

Oct. 2024

The work is jointed with Hong Chen and Bin Gu.

2024-11-11

Background

• Stochastic Compositional Optimization^[1]

Chen et al.,^[1] stated that **stochastic bilevel nested (1)** problem encompasses two popular formulations with the nested structure: **stochastic min-max problem** and **stochastic compositional problem (2)**.

$$\min_{w \in \mathbb{R}^p} \mathbb{E}_{\bar{z}} \left[f_{\bar{z}} \left(w, v^*(w) \right) \right] \quad \text{s.t.} \quad v^*(w) = \arg\min_{v \in \mathbb{R}^d} \mathbb{E}_z \left[h_z(w, v) \right] \tag{1}$$

$$h_z(w,v) = \|v - g_z(w)\|^2 \text{ and } f_{\bar{z}}(w,v) = f_{\bar{z}}(v) \qquad \Longrightarrow \qquad \min_{w \in \mathcal{W} \in \mathbb{R}^p} \mathbb{E}_{\bar{z}}\left[f_{\bar{z}}(\mathbb{E}_z\left[g_z(w)\right])\right] \tag{2}$$

[1] T. Chen, Y. Sun, and W. Yin. Closing the gap: Tighter analysis of alternating stochastic gradient methods for bilevel problems. NeurIPS, 2021.

Background

Stochastic Compositional Problems

$$\min_{w \in \mathcal{W} \in \mathbb{R}^p} \mathbb{E}_{\bar{z}} \left[f_{\bar{z}}(\mathbb{E}_z \left[g_z(w) \right]) \right]$$
 (2)

$$\min_{w \in \mathbb{R}^d} \max_{p \in \Delta_n} F_p(w) = \sum_{i=1}^n p_i \ell(w; z_i) - h(p, 1/n)$$

$$\prod_{\substack{w \in \mathbb{R}^d}} p_i^*(w) = \frac{\exp(\ell(w; z_i)/\lambda)}{\sum_{i=1}^n \exp(\ell(w; z_i)/\lambda)} - \sum_{i=1}^n p_i \log(np_i)$$

$$\prod_{\substack{w \in \mathbb{R}^d}} F(w) = \lambda \log\left(1/n\sum_{i=1}^n \exp(\ell(w; z_i)\lambda)\right)$$

Distributionally Robust Optimization (DRO)^[2]

$$\min_{w \in \mathbb{R}^d} \left\{ \mathbb{E}[(h_w(x) - a(w))^2 | y = 1] + \mathbb{E}[(h_w(x') - b(w))^2 | y' = -1] + (1 - a(w) + b(w))^2 \right\}$$
$$a(w) = \mathbb{E}[h_w(x) | y = 1] \quad b(w) = \mathbb{E}[h_w(x') | y' = -1]$$

AUC maximization^[3]

[2] Q. Qi, Z. Guo, Y. Xu, R. Jin, and T. Yang. An online method for a class of distributionally robust optimization with non-convex objectives. NeurIPS, 2021.

[3]T. Yang, and Y. Ying. AUC maximization in the era of big data and AI: A survey. ACM Computing Surveys, 2023.

Jun Chen

Background

[4]

Algorithm 1 (Black-box) SCGD / SCSC

Require: v_1, w_1 : initial outer model and inner models; β, η_1 : initial learning rates for all t = 1, ..., T - 1 do Randomly sample $i_t \in [n]$, obtain $g_{z_{i_t}}(w_t)$ and $\nabla g_{z_{i_t}}(w_t)$ (Inner black-box: obtain $\tilde{\nabla} g_{z_{i_t}}(w_t)$ similar to Equation (4)) SCGD: Update $v_{t+1} = (1 - \beta)v_t + \beta g_{z_{i_t}}(w_t)$ SCSC: Update $v_{t+1} = (1 - \beta)v_t + \beta g_{z_{i_t}}(w_t) + (1 - \beta)(g_{z_{i_t}}(w_t) - g_{z_{i_t}}(w_{t-1}))$ Randomly sample $j_t \in [m]$, obtain $\nabla f_{\bar{z}_{j_t}}(v_{t+1})$ (Outer black-box: obtain $\tilde{\nabla} f_{\bar{z}_{j_t}}(v_{t+1})$) Update $w_{t+1} = w_t - \eta_t \nabla g_{z_{i_t}}(w_t) \nabla f_{\bar{z}_{j_t}}(v_{t+1})/w_{t+1} = w_t - \eta_t \nabla g_{z_{i_t}}(w_t) \tilde{\nabla} f_{\bar{z}_{j_t}}(v_{t+1})$ $/w_{t+1} = w_t - \eta_t \tilde{\nabla} g_{z_{i_t}}(w_t) \nabla f_{\bar{z}_{j_t}}(v_{t+1})/w_{t+1} = w_t - \eta_t \tilde{\nabla} g_{z_{i_t}}(w_t) \tilde{\nabla} f_{\bar{z}_{j_t}}(v_{t+1})$

end for

Ensure: Final model w_T

[4] M. Wang, E. Fang, and H. Liu. Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions. Mathematical Programming, 2017.

Jun Chen

Preliminary

Algorithmic Stability Analysis

Original Perturbed **Training Set** Training Set ር ጋ ()() \bigcirc () \bigcirc Learning Map Hypothesis **Function Space**

Small perturbation of the training set should not change the trained model parameters much^[5].

• Perturbation

Replace a sample

Delete a sample

[5] O. Bousquet, and A. Elisseeff. Stability and generalization. Journal of Machine Learning Research, 2: 499–526, 2002.

2024-11-11

Preliminary

Assumptions

Lipschitz continuity $||g_z(w) - g_z(w')|| \le L_g ||w - w'||$ $|f_{\bar{z}}(v) - f_{\bar{z}}(v')| \le L_f ||v - v'||$ \succ

► Bounded variance $\mathbb{E}_{z}\left[\left\|g_{z}(w) - g(w)\right\|^{2}\right] \leq V_{g}$

 $\succ \text{Smoothness} \left\{ \begin{array}{l} \|\nabla g_z(w) - \nabla g_z(w')\| \le \alpha_g \|w - w'\|, \quad \|\nabla f_{\bar{z}}(v) - \nabla f_{\bar{z}}(v')\| \le \alpha_f \|v - v'\| \\ \|\nabla f_{\bar{z}}(g_z(w)) - \nabla f_{-}(g_z(w))\| \le \alpha_g \|w - w'\|, \quad \|\nabla f_{\bar{z}}(v) - \nabla f_{\bar{z}}(v')\| \le \alpha_f \|v - v'\| \end{array} \right\}$

$$\left\|\nabla f_{\bar{z}}(g_z(w)) - \nabla f_{\bar{z}}(g_z(w'))\right\| \le \alpha \left\|w - w'\right\|$$

 $||g_z(w + \mu u) - g_z(w)|| \le M_g, ||f_{\bar{z}}(v + \mu u) - f_{\bar{z}}(v)| \le M_f$

Weak bounded function and gradient –

$$\|\nabla g_z(w+\mu u) - \nabla g_z(w)\| \le M'_g, \ \|\nabla f_{\bar{z}}(v+\mu u) - \nabla f_{\bar{z}}(v)\| \le M'_f$$

 \blacktriangleright PL condition $\mathbb{E}\left[\|\nabla F_S(w)\|^2\right] \ge 2\gamma \mathbb{E}\left[F_S(w) - F_S(w(S))\right]$

Generalization Bound of General SCO

Co-coercivity property of convex and smooth function

Assume the function f is convex and α -smooth. Then, for any w, w', we have $\langle \nabla f(w) - \nabla f(w'), w - w' \rangle \ge \frac{1}{\alpha} \| \nabla f(w) - \nabla f(w') \|^2.$

Theorem 1 (Convex)

Let Lipschitz continuity and smoothness assumptions hold and the function f(g(w)) is convex. Assume that the randomized algorithm A for SCO problem brings the model sequences $\{w_t\}_{t=1}^T$ and $\{w_t^{i,z}\}_{t=1}^T \left(\{w_t^{j,\bar{z}}\}_{t=1}^T\right)$ on datasets S and $S^{i,z} \left(S^{j,\bar{z}}\right)$ with the step size sequence $\{\eta_t\}_{t=1}^T$. For SCGD with $\eta_t \leq \frac{2\beta}{\alpha t}$ and SCSC with $\eta_t \leq \frac{2}{\alpha t}$, the final output $A(S) = w_T$ has the following generalization bound $\mathbb{E}[|F(w_T) - F_S(w_T)|] \leq \mathcal{O}\left(\left(n^{-1} + m^{-1}\right)\log T + n^{-\frac{1}{2}}\right).$

Generalization Bound of General SCO

	Yang et al., ^[6]		Theorem 1	
> Order	$\mathcal{O}\left(\max\left\{n^{-1}, m^{-1}\right\} \cdot \max\left\{n^{\frac{1}{2}}, m^{\frac{1}{2}}\right\}\right)$	X	$\mathcal{O}\left(\left(n^{-1}+m^{-1}\right)\log T+n^{-\frac{1}{2}}\right)$	\checkmark
$\succ T$	$T = \mathcal{O}\left(\max\left\{ n^{\frac{7}{2}}, m^{\frac{7}{2}} \right\} \right)$	×	$T = \mathcal{O}(\max\{n, m\})^{[7]}$	\checkmark
\succ η_t	$\eta = \mathcal{O}\left(T^{-\frac{6}{7}}\right)$	×	$\eta_t = \mathcal{O}(t^{-1})^{[8]}$	\checkmark
$\succ \beta$	$\beta = \mathcal{O}\left(T^{-\frac{4}{7}}\right)$	X	Without special restriction	\checkmark

[6] M. Yang, X. Wei, T. Yang, and Y. Ying. Stability and generalization of stochastic compositional gradient descent algorithms. ICML, 2024.

[7] M. Wang, E. Fang, and H. Liu. Stochastic compositional gradient descent: Algorithms for minimizing compositions of expected-value functions. Mathematical Programming, 161(1-2):419–449, 2017.
 [8] J. Zhang and L. Xiao. A stochastic composite gradient method with incremental variance reduction. NeurIPS, 2019.

[9] T. Chen, Y. Sun, and W. Yin. Solving stochastic compositional optimization is nearly as easy as solving stochastic optimization. IEEE Transactions on Signal Processing, 69:4937–4948, 2021.

2024-11-11

Jun Chen

8

Generalization Bound of General SCO

Almost co-coercivity property of smooth function

Consider the gradient-based optimization method $w_{t+1} = w_t - \eta_t \nabla \hat{f}(w_t)$. For two iteration sequences $\{w_t\}_{t \in [T]}$ and $\{w'_t\}_{t \in [T]}$, if the function $\hat{f}(w_t)$ is ρ -smooth, $\eta_t \leq 1/(2\rho)$, and the minimum eigenvalue $\lambda_{\min}\left(\nabla^2 \hat{f}(w_t)\right) \geq -\epsilon$, then

$$\left\langle w_t - w'_t, \nabla \hat{f}(w_t) - \nabla \hat{f}(w'_t) \right\rangle \ge 2\eta_t \left(1 - \frac{\eta_t \rho}{2} \right) \|\nabla \hat{f}(w_t) - \nabla \hat{f}(w'_t)\|^2 - \epsilon \|w_t - w'_t - \eta_t \nabla \hat{f}(w_t) + \eta_t \nabla \hat{f}(w'_t)\|^2.$$

Theorem 2 (Non-convex)

Under the condition of Theorem 1 without convex assumption, for SCGD with $\eta_t \leq \frac{1}{2\rho t}$, $\rho = \alpha_g L_f + \beta L_g^2 \alpha_f$ and $\eta_t \leq \frac{1}{2\rho t}$, SCSC with $\rho = \alpha_g L_f + L_g^2 \alpha_f$, the final output $A(S) = w_T$ has the following generalization bound $\mathbb{E}[|F(w_T) - F_S(w_T)|] \leq \mathcal{O}\left(\left(n^{-1} + m^{-1}\right)T^{\frac{1}{2}}\log T + n^{-\frac{1}{2}}\right).$

Learning Guarantees of Black-Box SCO

Theorem 3 (Outer Black-Box)

Let the bounded first order gradient, bounded second order gradient, bounded variance and PL assumptions

hold. Assume that the randomized algorithm A for SCO problem brings the model sequences $\{w_t\}_{t=1}^T$ and

 $\begin{cases} w_t^{i,z} _{t=1}^T \left(\left\{ w_t^{j,\bar{z}} \right\}_{t=1}^T \right) \text{ on } \mathcal{D} \text{ and } \mathcal{D}^{i,z} \left(\mathcal{D}^{j,\bar{z}} \right) \text{ with the step size sequence } \left\{ \eta_t \right\}_{t=1}^T. \text{ For the outer black-box SCGD} \\ \text{with } \eta_t = \frac{1}{p\gamma t}, p \ge \max \left\{ \sqrt{\frac{2\alpha}{\gamma}}, \frac{2\left(\alpha_g M_f + \beta L_g^2 M_f' \right)}{\mu\gamma} \right\} \text{ and the outer black-box SCSC with } \eta_t = \frac{1}{p\gamma t}, p \ge \max \left\{ \sqrt{\frac{2\alpha}{\gamma}}, \frac{2\left(\alpha_g M_f + L_g^2 M_f' \right)}{\mu\gamma} \right\}, \text{ the final output } A(S) = w_T \text{ has the learning guarantee} \\ \mathbb{E} \left[F(w_T) - F(w^*) \right] \le \mathcal{O} \left(\left(n^{-1} + m^{-1} \right) T^{\frac{1}{2}} \log T + n^{-\frac{1}{2}} + \frac{\mu^2}{\mu^2} + \frac{b^{-1} d_2}{\mu^2} \right), \\ \text{where } d_2 = d - (2p+1)\beta + \left(p + \frac{1}{2} \right)^2 \beta^2 \text{ for SCGD and } d_2 = d - 2p - 1 + \left(p + \frac{1}{2} \right)^2 \text{ for SCSC.} \end{cases}$

• Learning Guarantees of Black-Box SCO

Corollary 2 (Full Black-Box)

Let the conditions of Theorem 3 hold. For the full black-box SCGD with
$$\eta_t = \frac{1}{p\gamma t}, p \ge \max\left\{\sqrt{\frac{2\alpha}{\gamma}}, \left(2\left(\beta L_g M'_f M_g + M_f M'_g\right)\right) \left(\mu^2 \gamma\right)\right\}$$
 and the outer black-box SCSC with $\eta_t = \frac{1}{p\gamma t}, p \ge \max\left\{\sqrt{\frac{2\alpha}{\gamma}}, \frac{2\left(L_g M'_f M_g + M_f M'_g\right)}{\mu^2 \gamma}\right\}$, the final output $A(S) = w_T$ has the learning guarantee

$$\mathbb{E}\left[F(w_T) - F(w^*)\right] \le \mathcal{O}\left(\left(n^{-1} + m^{-1}\right)T^{\frac{1}{2}}\log T + n^{-\frac{1}{2}} + \mu^4 + b^{-2}d_2^2 + b^{-1}d_2\right),$$

where $d_2 = d - 2\sqrt{\left(p + \frac{1}{2}\right)\beta} + \left(p + \frac{1}{2}\right)\beta$ for SCGD and $d_2 = d - 2\sqrt{\left(p + \frac{1}{2}\right)} + p + \frac{1}{2}$ for SCSC.

Applications

• Vertical Federated Learning (VFL)^[11,12]

Algorithm 2 FOO-based VFL / VFL-CZOFO

Require: v_1, w_1^k : initial global model and K local models; η_0, η_1 : initial learning rates for all t = 1, ..., T - 1 do for all $k \in [K]$ in parallel do Randomly select a sample $i_t \in [n]$, obtain $g_{z_{i_t}}(w_t^k)$ and $\nabla g_{z_{i_t}}(w_t^k)$ Send $g_{z_{i_t}}(w_t^k)$ to server **FOO-based VFL:** Receive $\nabla f(g_{z_{i_t}}(w_t^k))$ Update $w_{t+1} = w_t - \eta_t \nabla g_{z_{i_t}}(w_t^k) \nabla f(g_{z_{i_t}}(w_t^k))$ **VFL-CZOFO:** Receive $\tilde{\nabla} f(g_{z_{i_t}}(w_t^k))$ Update $w_{t+1} = w_t - \eta_t \nabla g_{z_{i,t}}(w_t^k) \nabla f(g_{z_{i,t}}(w_t^k))$ end for Server receives $g_{z_{i_t}}(w_t^k)$ from K clients **FOO-based VFL:** Obtain and send $\nabla f(g_{z_{i_{t}}}(w_{t}^{k}))$ to the k-th client **VFL-CZOFO:** Compute $\tilde{\nabla} f(g_{z_{i_t}}(w_t^k))$ and send it to the k-th client Obtain $\nabla f(v_t)$ and update $v_{t+1} = v_t - \eta_0 \nabla f(v_t)$ end for **Ensure:** K final client models $w_T^1, ..., w_T^K$

[11] T. Chen, X. Jin, Y. Sun, and W. Yin. VAFL: a method of vertical asynchronous federated learning, arXiv, 2007.06081, 2020.

[12] G. Wang, B. Gu, Q. Zhang, X. Li, B. Wang, and C. Ling. A unified solution for privacy and communication efficiency in vertical federated learning. NeurIPS, 2023.

2024-11-11

Jun Chen

Applications

Vertical Federated Learning (VFL)

Corollary 4 (VFL-CZOFO)

Let the bounded first order gradient, bounded second order gradient, and PL assumptions hold. For the k-th client ($k \in [K]$), assume that the randomized VFL-CZOFO algorithm brings the model sequences $\{w_t^k\}_{t=1}^T$ and $\{w_t^{i,z,k}\}_{t=1}^T$ on S and $S^{i,z}$ with the step size sequence $\{\eta_t\}_{t=1}^T, \eta_t = \frac{1}{p\gamma t}, p \ge \max\left\{\sqrt{\frac{2\alpha}{\gamma}}, \frac{2\left(\alpha_g M_f + L_g^2 M_f'\right)}{\mu\gamma}\right\}$. Then, the final output $A(S) = w_T^k$ of the k-th client has the generalization guarantee

$$\mathbb{E}\left[F(w_T^k) - F(w^{k*})\right] \le \mathcal{O}\left(n^{-1}T^{\frac{1}{2}}\log T + \mu^2 + b^{-1}d_2\right).$$

Thanks

Jun Chen

Huazhong Agricultural University, Wuhan, China

cj850487243@163.com

Feb. 2023