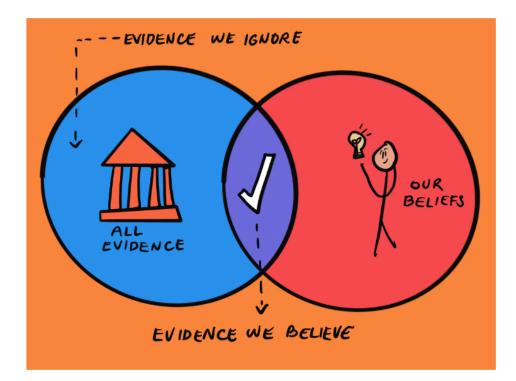

Bias Detection via Signaling

Yiling Chen¹, **Tao Lin¹**, Ariel D. Procaccia¹, Aaditya Ramdas², Itai Shapira¹


¹:Harvard University ²:Carnegie Mellon University

NeurIPS 2024

People (or AI) are biased

Anchoring Bias

Confirmation Bias

Q1: How to quantify bias?

We adopt a linear bias model in the context of Bayesian reasoning from economics:

- An agent has to make a decision (choosing an action $a \in A$)
- There is a state of the world $\theta \in \Theta$, distributed according to prior $\mu_0 \in \Delta(\Theta)$
- If the agent was perfectly Bayesian, then whenever receiving a piece of evidence (signal) $s \sim P(s|\theta)$, the posterior $\mu_s \in \Delta(\Theta)$ should be $\mu_s(\theta) = \frac{\mu_0(\theta)P(s|\theta)}{P(s)}$
- The agent has a bias towards the prior, measured by $w \in [0, 1]$ (bias level):

$$\nu_s = w \ \mu_0 + (1 - w) \ \mu_s$$

• Based on their biased belief v_s , the agent makes an optimal decision:

 $a^* \in \operatorname{argmax}_{a \in A} \mathbb{E}_{\theta \sim \nu_s} [U(a, \theta)]$

Q2: How to *detect* and *measure* bias?

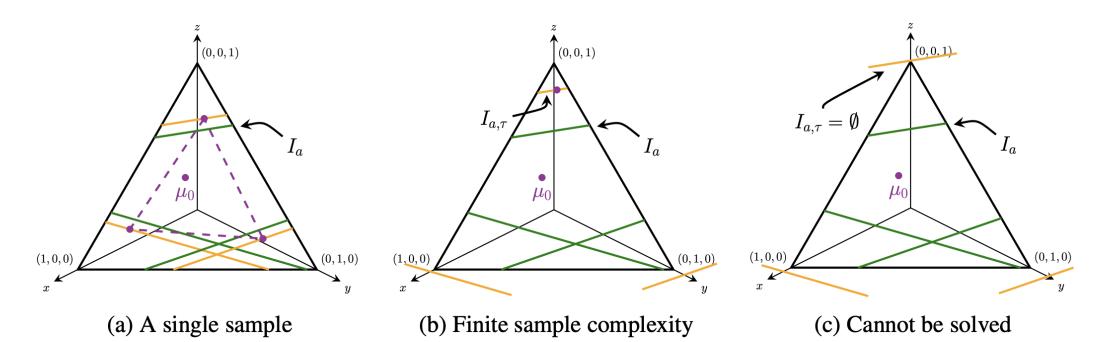
- An agent has to make a decision (choosing an action $a \in A$)
- There is a state of the world $\theta \in \Theta$, distributed according to prior $\mu_0 \in \Delta(\Theta)$
- If the agent was perfectly Bayesian, then whenever receiving a piece of evidence (signal) $s \sim P(s|\theta)$, the posterior $\mu_s \in \Delta(\Theta)$ should be $\mu_s(\theta) = \frac{\mu_0(\theta)P(s|\theta)}{P(s)}$
- The agent has a bias towards the prior, measured by $w \in [0,1]$ (bias level): $v_s = w \; \mu_0 + (1-w) \; \mu_s$
- Based on their biased belief v_s , the agent makes an optimal decision:

 $a^* \in \operatorname{argmax}_{a \in A} \mathbb{E}_{\theta \sim \nu_s} [U(a, \theta)]$

We use information design:

design the " $P(\cdot | \cdot)$ " (signaling scheme) to infer whether $w \ge \tau$ or $w \le \tau$ (from the agent's actions) We can design signaling scheme $\pi_t : \Omega \to \Delta(S)$ adaptively

Our Results


The **Sample Complexity** of an adaptive algorithm for the bias detection problem is:

E[time steps needed for the algorithm to output $w \ge \tau$ or $w \le \tau$]

Main Theorem:

- Constant algorithms are as powerful as adaptive algorithms.
- The optimal constant signaling scheme π^* can be computed by a linear program (with poly size)
- π^* has the following properties:
 - π^* recommends action $a \in A$ to agent ("revelation principle")
 - Let a_0 be the optimal action for the agent at the prior belief μ_0 . When π^* recommends action $a \neq a_0$, the agent's actual action reveals $w \geq \tau$ or $w \leq \tau$ (if actual action = a_0 , then $w \geq \tau$; if actual action = a or any $a' \neq a_0$, then $w \leq \tau$)

Geometric Characterization

Scan here for details:

Bias Detection via Signaling. (NeurIPS 2024)

Yiling Chen, Tao Lin, Ariel D. Procaccia, Aaditya Ramdas, Itai Shapira