Score Distillation via Reparametrized DDIM

Artem Lukoianov

Haitz S de Ocáriz Borde Greenewald

Kristjan

Vitor Guizilini

Timur

Vincent Sitzmann

Justin Solomon

Bagautdinov

3D generation with the quality of 2D diffusion? 2D Diffusion (DDIM)

Image Diffusion generates crisp, high-quality images

3D generation with the quality of 2D diffusion? **2D Diffusion (DDIM) Score Distillation (SDS)**

Image Diffusion generates crisp, high-quality images

Score Distillation Sampling uses Image Diffusion, but the results are blurry

3D generation with the quality of 2D diffusion? Score Distillation (SDS) 2D Diffusion (DDIM) Ours (SDI)

Image Diffusion generates crisp, high-quality images

Score Distillation Sampling uses Image Diffusion, but the results are blurry

We provide a theoretical analysis and suggest a fix

Score Distillation uses off-the-shelf 2D diffusion to generate 3D objects

We show that SDS is a dual process of DDIM The two trajectories match when using correct noise

$x_0(t_2) \qquad x_0(t_3)$

 t_3

 \mathcal{X}

DDIM Single-step denoising

Noising

Reparametrizing DDIM Formal derivation

 x_{0} $x_0(t-\tau) = x_0(t) - \sigma(t-\tau) \left[\epsilon_{\theta}^{t-\tau} \left(\sqrt{\alpha(t-\tau)} x \right) \right]$

 $\kappa_y^t = \epsilon_\theta^t \left(\sqrt{\alpha(t)} x_t \right)$

o noised with
$$\kappa_y^t$$
 to time $t - \tau$
 $x_0(t) + \sqrt{1 - \alpha(t - \tau)} \kappa_y^t(x_0(t)), y) - \kappa_y^t(x_0(t))].$
predicted noise
noise sample κ_y^t

$$\kappa_0(t) + \sqrt{1 - \alpha(t)} \kappa_y^t, y$$

 $\kappa_y^t \sim \mathcal{N}(0, I)$

Noise is the problem!

Prompt – "an iguana holding a balloon"

$\kappa_y^t = \epsilon_\theta^t \left(\sqrt{\alpha(t)} x_0(t) + \sqrt{1 - \alpha(t)} \kappa_y^t, y \right)$

DDIM inversion

DDIM DDIM inversion

By fixing the noise term we are bringing the generation quality in 3D much closer to the 2D models

MORE ABOUT THE WORK CODE AND THE FULL PAPER ARE AVAILABLE

lukoianov.com/sdi