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Overview
SETTING

• Stochastic Gradient Descent (SGD): We study streaming SGD with batch size 1. At each
iteration, the algorithm computes a stochastic gradient based on a single data point and
moves one step in the decreasing direction

• High-Dimensional Linear (High Line) Composite Models: Our theorem applies to
various models including linear regression, logistic regression, and simple neural nets

GOAL

Analyze the dynamics of SGD with adaptive learning rates (SGD+AL) in high dimensions

Main Contributions

• Training dynamics of SGD+AL converge to the solution of a deterministic system of ODEs

• Greed can be arbitrarily bad in the presence of strong anisotropy

• AdaGrad-Norm selects the optimal learning rate, provided it has a warm start

• AdaGrad-Norm can use overly pessimistic decaying schedules on hard problems

Model Setup
OPTIMIZATION PROBLEM

min
x∈Rd

n

R(x)
def
= Ea,ε

�

f (a⊤x;a⊤x⋆,ε)
�

o

• a ∈ Rd , a∼N (0,K)

• ε ∈ R, ε∼N (0,ω2)

• ∥K∥op,∥x∗∥2 bounded independent of d

• Includes problems like: least squares,
logistic regression, one-neuron networks

• Our goal is to classify limiting behavior as
d →∞

SGD+AL ALGORITHM

xk+1 = xk −
γk

d
∇ f (a⊤k xk;a⊤k x⋆,εk)

• ∥x0∥2 is bounded independent of d

• γk can depend on historical norms of
gradients ∥∇ f ∥2, losses R(xk), and iterate
norms ∥xk∥2

• γk is bounded in its arguments

• Includes algorithms like: AdaGrad-Norm,
RMSProp, DoG, D-Adaptation

Specific Algorithms
EXAMPLE: ADAGRAD-NORM

γk =
η

r

b2 + 1
d2

∑k
j=0



∇ f (a⊤k x;a⊤k x⋆,εk)
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• AdaGrad, but with a global learning rate
rather than adjusted on a per-weight
basis.

• Stepsize is automatically bounded by ηb .

• Depends only on the norms ∥∇ f ∥2 of past
gradients.

Require: η > 0, x0 ∈ Rd , b ∈ R, b0 = bd
for k = 1,2, . . . , do

Take ak ∼N (0,K), εk ∼N (0,ω2);
∇k←∇ f (a⊤k x;a⊤k x⋆,εk)
b2

k ← b2
k−1 + ∥∇k∥2;

γk−1← d × η
|bk|

; ▷ update stepsize
xk← xk−1 −

γk−1
d ∇k; ▷ weights

end for

Main Concentration Result
We define S : Rd → R2×2 given by

S(x ; z) =

�

x⊤ R(z,K) x x⊤ R(z,K) x∗

x⊤ R(z,K) x∗ (x∗)⊤ R(z,K) x∗

�

where R(z,K) = (K− z · Id)
−1 for z ∈ C\σ(K)

is the resolvent of K

THEOREM [INFORMAL]

S along SGD concentrates around the
deterministic solution to the system of ODEs

dS (t ; z) =F (S (t ; z) )

We consider ϕ : Rd → R given by

ϕ(x) = g

��

x⊤ q(K)x x⊤ q(K)x∗

x⊤ q(K)x∗ (x∗)⊤ q(K)x∗

��

where g is α-pseudo-Lipschitz with α≤ 1
and q is a polynomial

• Can recover R(x) and D(x)
def
= ∥x− x∗∥ from ϕ

• Using Cauchy’s integral formula,

ϕ(x) = g

�

1
2πi

∮

Γ

q(z)S(x ; z)dz

�

where Γ is a fixed contour around spectrum of K

COROLLARY [INFORMAL]

ϕ along SGD concentrates around the
deterministic function

φ(t) = g

�

1
2πi

∮

Γ

q(z)S (t , z)dz

�

• We refer to φ as deterministic equivalent of ϕ

• In particular, we defineR andD as deterministic
equivalents of R and D, respectively

• We can derive an ODE dφ(t) = G (S (t ; z) )

Beyond Gaussian Data: CIFAR-5m
DISCRETE PROBLEM

min
x∈Rd

¨

R(x)
def
=

1
2n
∥Fx− b∥2 =

1
2n

n
∑

i=1

(fi · x− bi)
2

«

xk+1 = xk − γk

�

fik+1
· xk − bik+1

�

fik+1
, {ik} iid Unif({1,2, · · · , n}

• Binary classification with least squares;
γk is AdaGrad-Norm learning rate.

• Take n images from two classes of
CIFAR-5m, reshape into a matrix A ∈
Rn×1024 (preconditioned to have centered
rows with norm 1.) b ∈ Rn has bi = 1
if the corresponding image is an airplane
and bi = 0 otherwise.

• Generate matrix W ∈ R1024×d with
iid Gaussian entries, set features F =
relu(AW ).

• Shown: AdaGrad-Norm true vs predicted
loss for d = 2000. Concentration is
nearly perfect.

• For small n, SGD can overfit and learn
quickly; for larger n, a general mapping
must be learned, so loss decreases more
slowly.
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Main Result Examples
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Concentration of learning rate and risk for AdaGrad-Norm on least squares with label noise
ω= 1 (left) and logistic regression with no noise (right). As dimension increases, both risk and
learning rate concentrate around a deterministic limit (red) described by our ODE. The initial
risk increase (left) suggests the learning rate started too high, but AdaGrad-Norm adapts. Our
ODEs predict this behavior.

Classical Idealized Algorithms Analysis
Two main interests for choosing the learning rate at each iteration:
maximize the decrease in risk or in distance to optimality

• For stochastic algorithms, this is not feasible

Consider the stochastic idealized algorithms whose deterministic equivalents satisfy

γLine Search
t ∈ arg min

γ
dR(t) EXACT LINE SEARCH

γ
Polyak
t ∈ arg min

γ
dD(t) POLYAK

In the noiseless least squares problem with λmin(K)> C > 0,

γ
Polyak
t =

1
1
d tr(K)

and γLine Search
t ≍

λmin(K)
1
d tr(K2)

Comparison for Exact Line Search and Polyak on a noiseless least squares problem. The

left plot illustrates the convergence of the risk function, while the right plot depicts the
convergence of the quotient γt/

λmin(K)
1
d Tr(K2)

for Polyak and Exact Line Search. Both plots highlight

that, in high-dimensional settings, a broader spectrum of K results in λmin(K)
1
d Tr(K2)

≪ 1
1
d Tr(K)

, indicating

slower risk convergence and poorer performance of Exact Line Search (unmarked) as it deviates
from Polyak (circle markers).

AdaGrad-Norm Analysis
We analyze the behavior of AdaGrad-Norm in the least squares setting. In the presence of
additive noise, the learning rate decays like t−1/2, regardless of the data covariance K. In
contrast, the model with no noise exhibits a learning rate that depends on the spectrum of K.
We consider three cases:

SPECTRUM OF K BOUNDED BELOW

In the noiseless least squares problem with
λmin(K)> C > 0, integrable risk, 1

d tr(K)≤ b
η

γ AdaGrad-Norm
t ≍

η2

b
η +

1
4d tr(K)∥x0 − x∗∥2

.

o(d) EIGENVALUES BELOW FIXED THRESHOLD

With o(d) eigenvalues below some fixed
threshold, x∗ not aligned with eigenvectors,
x0 = 0, there exists γ̃≥ 0 such that

γ AdaGrad-Norm
t ≥ γ̃ for all t ≥ 0.

POWER LAW COVARIANCE SUPPORTED ON (0,1) AT d →∞

When the spectrum of K and x∗ converge to the power law measures ρ(λ) = (1− β)λ−β1(0,1)

and
�

(x0 − x∗)⊤ωi

�2 ∼ λ−δi , then, for all t ≥ 1,

if 0< β +δ < 1, there exists γ̃ > 0 such that γ AdaGrad-Norm
t ≥ γ̃

if β +δ = 1, γ AdaGrad-Norm
t ≍α,β

1
log(t + 1)

if 1< β +δ < 2, γ AdaGrad-Norm
t ≍α,β t−1+ 1

β+δ
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Phase transition as δ+β varies. When δ+β < 1 (green), the learning rate (right) is constant
as t → ∞. In contrast, when 2 > δ + β > 1 (purple), the learning rate decreases at a rate
t−1+1/(β+δ) with δ + β = 1 (white) where the change occurs. Same phase transition occurs in
the sublinear rate of the risk decay (left).

Future Questions
• Can we extend our analysis to . . .

– D-adaptation?
– DoG?
– RMSProp?

• Conclusions about catapult mechanism?

• Can we generalize our theorem to . . .

– non-Gaussian data?
– non-convex problems?
– different risk structures?

• Analogous result for multi-pass SGD?
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