Richard Yuanzhe Pang Weizhe Yuan Kyunghyun Cho He He Sainbayar Sukhbaatar* Jason Weston*

Meta

Iterative preference optimization on general instruction following tasks:

- DPO (Rafailov et al., 2023) \rightarrow Iterative DPO (Xu et al., 2023)
- Self-rewarding LM (Yuan et al., 2023)
- SPIN (Chen et al., 2024)

Training methods on reasoning:

- STaR (Zelikman et al., 2022)
- ReST^{EM} (Singh et al., 2024)
- V-STaR (Hosseini et al., 2024)

We develop an approach to apply iterative preference optimization to reasoning tasks.

Next iteration model

Start with base model & fixed training set with labels

Start with base model & fixed training set with labels

• Generate multiple CoTs+answers per train example with current model

Start with base model & fixed training set with labels

- Generate multiple CoTs+answers per train example with current model
- Build preference pairs based on answer correct vs. not

Start with base model & fixed training set with labels

- Generate multiple CoTs+answers per train example with current model
- Build preference pairs based on answer correct vs. not
- Train w/ DPO + NLL term for correct CoTs+answers

Repeat steps with new model

DPO + NLL

Next iteration model

$$\mathcal{L}_{\text{DPO}}(c_i^w, y_i^w, c_i^l, y_i^l | x_i)$$

= $-\log \sigma \left(\beta \log \frac{M_{\theta}(c_i^w, y_i^w | x_i)}{M_t(c_i^w, y_i^w | x_i)} - \beta \log \frac{M_{\theta}(c_i^l, y_i^l | x_i)}{M_t(c_i^l, y_i^l | x_i)} \right)$

$\mathsf{DPO} + \mathsf{NLL}$

$$\mathcal{L}_{\text{DPO+NLL}} = \mathcal{L}_{\text{DPO}}(c_i^w, y_i^w, c_i^l, y_i^l | x_i) + \alpha \mathcal{L}_{\text{NLL}}(c_i^w, y_i^w | x_i)$$
$$= -\log \sigma \left(\beta \log \frac{M_{\theta}(c_i^w, y_i^w | x_i)}{M_t(c_i^w, y_i^w | x_i)} - \beta \log \frac{M_{\theta}(c_i^l, y_i^l | x_i)}{M_t(c_i^l, y_i^l | x_i)}\right) - \alpha \frac{\log M_{\theta}(c_i^w, y_i^w | x_i)}{|c_i^w| + |y_i^w|}$$

GSM8K

Iterative RPO

Zero-shot CoT	55.6	Iteration 1	73.1
+ majority vote (32 samples)	70.7	Iteration 2	78.0
SFT on gold CoT	63.5	Iteration 3	81.1
SFT on generated chosen CoTs (STaR 1 iteration)	65.2	Iteration 4	81.6
DPO init from llama	61.8	+ majority vote (32 samples)	88.7
DPO init from SFT model trained on chosen CoTs	60.3		

Init from Llama-2-70b-chat

GSM8K

Iterative RPO

Zero-shot CoT	55.6
+ majority vote (32 samples)	70.7
SFT on gold CoT	63.5
SFT on generated chosen CoTs (STaR 1 iteration)	65.2
DPO init from llama	61.8
DPO init from SFT model trained on chosen CoTs	60.3
SFT on generated chosen CoTs, but on twice as much data	66.9
Iterative RPO (Iteration 1) but on twice as much data	74.8

Iteration 1	73.1
Iteration 2	78.0
Iteration 3	81.1
Iteration 4	81.6
+ majority vote (32 samples)	88.7

ARC-Challenge and MATH

Model	ARC-Challenge (0-shot) Test acc %	MATH (4-shot) Test acc %
Iterative RPO		
Iteration 1	84.8	17.7
Iteration 2	86.2	19.9
Iteration 3	86.7	20.8
+ majority vote (32 samples)	87.9	29.1
Other Llama-2-70b-chat-initialized methods		
СоТ	77.8	12.5
SFT on chosen sequences	79.8	16.8
DPO init from Llama-2-70b-chat	82.8	12.4
DPO init from SFT model trained on chosen seqs	83.5	10.5

DPO+NLL

(a) Initialized from Llama

(b) Initialized from SFT trained on chosen seqs

We find the NLL term to be crucial, e.g., GSM8k results 73.1% vs. 61.8%

- Obs 1: margin increasing
- Obs 2: without NLL, both chosen and rejected log probs decrease

DPO+NLL

(a) Initialized from Llama

(b) Initialized from SFT trained on chosen seqs

We find the NLL term to be crucial, e.g., GSM8k results 73.1% vs. 61.8%

- Obs 1: margin increasing
- Obs 2: without NLL, both chosen and rejected log probs decrease

Q: What scenario (e.g., sampling approach, task) is naïve DPO harmful on?

Why does SFT not work too well?

(a) SFT trained on chosen seqs; init from Llama

We find that negative examples are crucial.

• When doing SFT on good sequences, the rejected seqs' probs also go up a lot!

Extension: unsupervised version of IRPO

- What if we generate prompts & don't know the reference answer?
- Look at consistency we trust a majority vote answer more if it has a higher proportion of votes
- Self-Consistency Preference Optimization (ScPO)

Next steps

- Self-consistency preference optimization (Prasad et al., 2024)
- Figure out when and why naïve DPO does not work
 - Unintentional unalignment (Razin et al., 2024): intuitively, "when y⁺ was No and y⁻ was Never, the probability of Yes would sharply increase
- More iterations for IRPO \rightarrow on-policy DPO