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Iterative preference optimization on general instruction following tasks:
• DPO (Rafailov et al., 2023) à Iterative DPO (Xu et al., 2023)

• Self-rewarding LM (Yuan et al., 2023)

• SPIN (Chen et al., 2024)

Training methods on reasoning:
• STaR (Zelikman et al., 2022)

• ReSTEM (Singh et al., 2024)

• V-STaR (Hosseini et al., 2024)

We develop an approach to apply iterative preference optimization to 
reasoning tasks. 
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the tth iteration, we use the current model Mt

in step (i) to generate new data for training the next iteration’s model Mt+1 in step (ii).

Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .

Chain-of-Thought & Answer Generation Given the current model Mt, we generate N different
responses for every input, where each response consists of CoT reasoning c followed by a final
answer y:

(cni , y
n
i ) ⇠ Mt(xi) for all xi 2 D and n 2 [1, N ].

In the general version of our approach, one then computes the reward rni for each of these responses
based on the correctness of their answers, i.e., rni = R(yni , yi). In our experiments this simply
corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.
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outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.
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inputs, and a binary reward is derived by the exact match between these labels and the final answer
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Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .
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responses for every input, where each response consists of CoT reasoning c followed by a final
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the tth iteration, we use the current model Mt

in step (i) to generate new data for training the next iteration’s model Mt+1 in step (ii).

Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .

Chain-of-Thought & Answer Generation Given the current model Mt, we generate N different
responses for every input, where each response consists of CoT reasoning c followed by a final
answer y:
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In the general version of our approach, one then computes the reward rni for each of these responses
based on the correctness of their answers, i.e., rni = R(yni , yi). In our experiments this simply
corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the tth iteration, we use the current model Mt

in step (i) to generate new data for training the next iteration’s model Mt+1 in step (ii).

Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .

Chain-of-Thought & Answer Generation Given the current model Mt, we generate N different
responses for every input, where each response consists of CoT reasoning c followed by a final
answer y:

(cni , y
n
i ) ⇠ Mt(xi) for all xi 2 D and n 2 [1, N ].

In the general version of our approach, one then computes the reward rni for each of these responses
based on the correctness of their answers, i.e., rni = R(yni , yi). In our experiments this simply
corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the tth iteration, we use the current model Mt

in step (i) to generate new data for training the next iteration’s model Mt+1 in step (ii).

Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .

Chain-of-Thought & Answer Generation Given the current model Mt, we generate N different
responses for every input, where each response consists of CoT reasoning c followed by a final
answer y:

(cni , y
n
i ) ⇠ Mt(xi) for all xi 2 D and n 2 [1, N ].

In the general version of our approach, one then computes the reward rni for each of these responses
based on the correctness of their answers, i.e., rni = R(yni , yi). In our experiments this simply
corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer

2

corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer71

provided in the training dataset. Thus we have constructed a set of generated responses augmented72

with rewards:73

Gi = {cni , yni , rni }n2[N ].

Preference optimization. In the next step, we first construct a dataset of response pairs Dpairs
t based74

on the generations Gi from the current model Mt. The paired data is constructed such that chosen75

(winning) responses have higher rewards than rejected (losing) responses. This data is then used76

for preference optimization. In general, this can be done by selecting two responses for the same77

input, such that one has higher reward than the other, and setting the one with higher reward as the78

winner. In the binary reward case, we can split the generated responses Gi into two sets based on79

their rewards:80

Gw
i = {cni , yni | rni = 1},

81

Gl
i = {cni , yni | rni = 0}.

Next we build a dataset of preference pairs by selecting a winner response (cwi , y
w
i ) from Gw

i , and a82

loser response (cli, y
l
i) from Gl

i. In particular, we simply iterate over Gw
i and Gl

i simultaneously2 to83

produce K pairs of indices {(wk, lk)}, in order to ensure we use as much of the data as possible.84

Dpairs
t = {(cwk

i , ywk
i ), (clki , ylki ) | for all xi 2 D and k 2 [K]}.

Given the preference pairs, we can now train a new model M✓ that will become our next model Mt+1.85

The parameters ✓ are initialized from model Mt, and updated with a loss function that combines the86

DPO loss [Rafailov et al., 2023] for learning from the preference pairs, and the negative log-likelihood87

(NLL) loss for learning over the winning response from each pair. The loss corresponding to each88

preference pair is as follows:89

LDPO+NLL = LDPO(c
w
i , y

w
i , c

l
i, y

l
i|xi) + ↵LNLL(c

w
i , y

w
i |xi)

= � log �

✓
�
logM✓(cwi , y

w
i |xi)

logMt(cwi , y
w
i |xi)

� �
logM✓(cli, y

l
i|xi)

logMt(cli, y
l
i|xi)

◆
� ↵

logM✓(cwi , y
w
i |xi)

|cwi |+ |ywi |
. (1)

Here M(x) denotes the probability of sequence x under the model M , and � is the sigmoid function.90
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the tth iteration, we use the current model Mt

in step (i) to generate new data for training the next iteration’s model Mt+1 in step (ii).

Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .

Chain-of-Thought & Answer Generation Given the current model Mt, we generate N different
responses for every input, where each response consists of CoT reasoning c followed by a final
answer y:

(cni , y
n
i ) ⇠ Mt(xi) for all xi 2 D and n 2 [1, N ].

In the general version of our approach, one then computes the reward rni for each of these responses
based on the correctness of their answers, i.e., rni = R(yni , yi). In our experiments this simply
corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer
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corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer71

provided in the training dataset. Thus we have constructed a set of generated responses augmented72

with rewards:73

Gi = {cni , yni , rni }n2[N ].

Preference optimization. In the next step, we first construct a dataset of response pairs Dpairs
t based74

on the generations Gi from the current model Mt. The paired data is constructed such that chosen75

(winning) responses have higher rewards than rejected (losing) responses. This data is then used76

for preference optimization. In general, this can be done by selecting two responses for the same77

input, such that one has higher reward than the other, and setting the one with higher reward as the78

winner. In the binary reward case, we can split the generated responses Gi into two sets based on79

their rewards:80

Gw
i = {cni , yni | rni = 1},
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i simultaneously2 to83

produce K pairs of indices {(wk, lk)}, in order to ensure we use as much of the data as possible.84
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i ), (clki , ylki ) | for all xi 2 D and k 2 [K]}.

Given the preference pairs, we can now train a new model M✓ that will become our next model Mt+1.85

The parameters ✓ are initialized from model Mt, and updated with a loss function that combines the86

DPO loss [Rafailov et al., 2023] for learning from the preference pairs, and the negative log-likelihood87

(NLL) loss for learning over the winning response from each pair. The loss corresponding to each88

preference pair is as follows:89
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Here M(x) denotes the probability of sequence x under the model M , and � is the sigmoid function.90

We use the previous iteration’s model Mt as the reference model in the denominator of the DPO term.91

Note that the NLL term is normalized by the total response length. The hyperparameter ↵ balances92

the two loss terms. For brevity we omit the pair index k, but we optimize this loss on each of the93

k 2 [K] pairs generated for every input sample. At the end of this training, we thus obtain our next94

model Mt+1 = M✓, which will be then used to build data for the subsequent iteration.95

Iterative training. Our overall procedure trains a series of models M1, . . . ,MT where each96

successive model t+ 1 uses preference data Dpairs
t created by the tth model.97

In our experiments, we define the models and the training data they use as follows:98

M0 : Base LLM; in our experiments we initialize with a fine-tuned instruction following model.99

M1 : Initialized with M0, then trained with Dpairs
0 using LDPO+NLL.100

M2 : Initialized with M1, then trained with Dpairs
1 using LDPO+NLL.101

M3 : Initialized with M2, then trained with Dpairs
2 using LDPO+NLL.102

M4 : Initialized with M3, then trained with Dpairs
3 using LDPO+NLL.103

This approach can be seen as a similar, but simpler, instance of the Self-Rewarding LLM training104

scheme proposed in Yuan et al. [2024], with three differences. Firstly, on each iteration in Self-105

Rewarding a new set of prompts is created to explore the input distribution, but in our approach106

we use the same fixed set of prompts. Secondly, due to this choice our experimental setup does107

not require a sophisticated reward model to judge the model generations, as we assume the training108

prompts have provided gold labels which we compare to. These two omitted steps are challenging109

2If the iteration reaches the end of a set, it restarts from the first element. If one of the sets is empty, then that
input will be ignored.

3

corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer
provided in the training dataset. Thus we have constructed a set of generated responses augmented
with rewards:

Gi = {cni , yni , rni }n2[N ].

Preference optimization. In the next step, we first construct a dataset of response pairs Dpairs
t based

on the generations Gi from the current model Mt. The paired data is constructed such that chosen
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Given the preference pairs, we can now train a new model M✓ that will become our next model Mt+1.
The parameters ✓ are initialized from model Mt, and updated with a loss function that combines the
DPO loss [Rafailov et al., 2023] for learning from the preference pairs, and the negative log-likelihood
(NLL) loss for learning over the winning response from each pair. The loss corresponding to each
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Here M(x) denotes the probability of sequence x under the model M , and � is the sigmoid function.
We use the previous iteration’s model Mt as the reference model in the denominator of the DPO term.
Note that the NLL term is normalized by the total response length. The hyperparameter ↵ balances
the two loss terms. For brevity we omit the pair index k, but we optimize this loss on each of the
k 2 [K] pairs generated for every input sample. At the end of this training, we thus obtain our next
model Mt+1 = M✓, which will be then used to build data for the subsequent iteration.

Iterative training. Our overall procedure trains a series of models M1, . . . ,MT where each
successive model t+ 1 uses preference data Dpairs

t created by the tth model.

In our experiments, we define the models and the training data they use as follows:

M0 : Base LLM; in our experiments we initialize with a fine-tuned instruction following model.

M1 : Initialized with M0, then trained with Dpairs
0 using LDPO+NLL.

M2 : Initialized with M1, then trained with Dpairs
1 using LDPO+NLL.

M3 : Initialized with M2, then trained with Dpairs
2 using LDPO+NLL.

M4 : Initialized with M3, then trained with Dpairs
3 using LDPO+NLL.

This approach can be seen as a similar, but simpler, instance of the Self-Rewarding LLM training
scheme proposed in Yuan et al. [2024], with three differences. Firstly, on each iteration in Self-
Rewarding a new set of prompts is created to explore the input distribution, but in our approach
we use the same fixed set of prompts. Secondly, due to this choice our experimental setup does
not require a sophisticated reward model to judge the model generations, as we assume the training
prompts have provided gold labels which we compare to. These two omitted steps are challenging
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GSM8K

9

Zero-shot CoT 55.6

+ majority vote (32 samples) 70.7

SFT on gold CoT 63.5

SFT on generated chosen CoTs (STaR
1 iteration)

65.2

DPO init from llama 61.8

DPO init from SFT model trained on 
chosen CoTs

60.3

Iterative RPO

Iteration 1 73.1

Iteration 2 78.0

Iteration 3 81.1

Iteration 4 81.6

+ majority vote (32 samples) 88.7

Init from Llama-2-70b-chat



GSM8K

10

Zero-shot CoT 55.6

+ majority vote (32 samples) 70.7

SFT on gold CoT 63.5

SFT on generated chosen CoTs (STaR
1 iteration)

65.2

DPO init from llama 61.8

DPO init from SFT model trained on 
chosen CoTs

60.3

SFT on generated chosen CoTs, but 
on twice as much data

66.9

Iterative RPO (Iteration 1) but on 
twice as much data

74.8

Iterative RPO

Iteration 1 73.1

Iteration 2 78.0

Iteration 3 81.1

Iteration 4 81.6

+ majority vote (32 samples) 88.7



ARC-Challenge and MATH

11

Model ARC-Challenge
(0-shot)

Test acc %

MATH 
(4-shot) 

Test acc %

Iterative RPO
Iteration 1
Iteration 2
Iteration 3

+ majority vote (32 samples)

84.8
86.2
86.7
87.9

17.7
19.9
20.8
29.1

Other Llama-2-70b-chat-initialized methods
CoT
SFT on chosen sequences
DPO init from Llama-2-70b-chat
DPO init from SFT model trained on chosen seqs

77.8
79.8
82.8
83.5

12.5
16.8
12.4
10.5



DPO+NLL

We find the NLL term to be crucial, e.g., GSM8k results 73.1% vs. 61.8%

• Obs 1: margin increasing

• Obs 2: without NLL, both chosen and rejected log probs decrease

Q: What scenario (e.g., sampling approach, task) is naïve DPO harmful on?
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We find the NLL term to be crucial, e.g., GSM8k results 73.1% vs. 61.8%

• Obs 1: margin increasing

• Obs 2: without NLL, both chosen and rejected log probs decrease

Q: What scenario (e.g., sampling approach, task) is naïve DPO harmful on?
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Why does SFT not work too well?

We find that negative examples are crucial.

• When doing SFT on good sequences, the rejected seqs’ probs also go up a lot!
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Extension: unsupervised version of IRPO

• What if we generate prompts & don’t know the reference answer?

• Look at consistency – we trust a majority vote answer more if it has a higher proportion of votes

• Self-Consistency Preference Optimization (ScPO) 
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Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model Mt, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model Mt+1. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSM8K to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting out
of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC Corpus),
and from 12.5% to 20.8% on MATH (without using the provided pretraining corpus in MATH). We
provide ablations that indicate the components that lead to these improvements. Overall, our method
provides a simple recipe that has the potential to improve the reasoning ability of LLMs over a wide
range of tasks.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the tth iteration, we use the current model Mt

in step (i) to generate new data for training the next iteration’s model Mt+1 in step (ii).

Initialization We assume we are given an initial model M0, and a training set D = {xi, yi}
containing questions xi and their correct answers yi . The model will be trained and updated at each
iteration, resulting in models M0,M1, . . . ,MT .

Chain-of-Thought & Answer Generation Given the current model Mt, we generate N different
responses for every input, where each response consists of CoT reasoning c followed by a final
answer y:

(cni , y
n
i ) ⇠ Mt(xi) for all xi 2 D and n 2 [1, N ].

In the general version of our approach, one then computes the reward rni for each of these responses
based on the correctness of their answers, i.e., rni = R(yni , yi). In our experiments this simply
corresponds to rni = 1 if yni = yi, and 0 otherwise; i.e., whether the prediction matches the answer
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Next steps

• Self-consistency preference optimization (Prasad et al., 2024)

• Figure out when and why naïve DPO does not work
• Unintentional unalignment (Razin et al., 2024): intuitively, “when y+ was No and y− was Never, 

the probability of Yes would sharply increase

• More iterations for IRPO à on-policy DPO
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