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performs the following interaction with the environment 🌍 

T {1,…, K} := [K]

In round t = 1,…, T :
1. 👤  🌍
2.🌍  determines losses {ℓt,i}i∈[K]

3. 👤  🌍
Objective of 👤: minimizing (pseudo-)regret

 with  and RT :=
T

∑
t=1

(μt,at
− μt,i*) μt,i := 𝔼ℓt,i∼Pt,i

[ℓt,i] i* := argmini∈[K]

T

∑
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BOBW: one single 👤 ensures both 
optimal  regret in adv. regime 
and  regret in sto. regime
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Differential Privacy (LDP)
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Key Question

In heavy-tailed MAB, are there any fundamental barriers to the worst-case 
optimal regret in the adversarial regime and the BOBW guarantee?
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High-prob. bound:

• is stronger than expected bound

• implies high-prob. bound even in 

the adaptive adv. regime 😈 (in 
which loss distributions could 
depend on the history)

Δ := min
i:Δi>0

Δi
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Concluding Remarks

1. In heavy-tailed MAB, we achieve the first optimal adv. guarantee and the first 
BOBW guarantee without TNL assumption

2. By relaxing TNL, we also achieve the first optimal adv. guarantee in the 
Huber contamination model and the first BOBW guarantee under pure LDP

3. All the guarantees above hold with high probability, and hence have the 
potential to handle adaptive adversaries 😈
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