

Taming Heavy-Tailed Losses in Adversarial Bandits and the Best-of-Both-Worlds Setting

Duo Cheng¹, Xingyu Zhou², Bo Ji¹

¹Department of Computer Science, Virginia Tech ²Department of Electrical and Computer Engineering, Wayne State University

This work is supported in part by the NSF grants under CNS-2312833, CNS-2312835, and CNS-2153220, the Commonwealth Cyber Initiative (CCI), and Nokia Corporation

Given a time horizon T and a fixed arm set $\{1, \ldots, K\} := [K]$, a learning algorithm \mathbf{I} performs the following interaction with the environment In round t = 1, ..., T:

plays arm $a_t \in [K]$ determines losses $\{\ell_{t,i}\}_{i \in [K]}$ reveals loss ℓ_{t,a_t}

- Bounded case: $\{\ell_{t,i}\}_{i \in [K]} \in [0,1]^K$ Heavy-tailed case (this work): 1. O determines distributions $\{P_{t,i}\}_{i \in [K]}$ s.t. $\mathbb{E}_{\ell_{t,i} \sim P_{t,i}}[|\ell_{t,i}|^{1+\nu}] \leq u^{1+\nu}$ for every arm $i \in [K]$ and some **known** $u > 0, v \in (0,1]$

- plays arm $a_t \in [K]$ determines losses $\{\ell_{t,i}\}_{i \in [K]}$ reveals loss ℓ'_{t,a_t} $(\bullet Bounded case: <math>\{\ell_{t,i}\}_{i \in [K]} \in [0,1]^K$ $\bullet Heavy-tailed case (this work):$ $1. \bigcirc determines distributions <math>\{P_{t,i}\}_{i \in [K]}$ s.t. $\mathbb{E}_{\ell_{t,i} \sim P_{t,i}}[|\ell_{t,i}|^{1+\nu}] \leq u^{1+\nu}$ for every arm $i \in [K]$ and some known $u > 0, \nu \in (0,1]$ $2. \ell_{t,i}$ is drawn from $P_{t,i}$ for every arm i

Given a time horizon T and a fixed arm set $\{1, \ldots, K\} := [K]$, a learning algorithm \mathbf{I} performs the following interaction with the environment In round t = 1, ..., T:

$$R_T := \sum_{t=1}^T \left(\mu_{t,a_t} - \mu_{t,i^*} \right) \text{ with } \mu_{t,i} := \mathbb{E}_{\ell_{t,i} \sim P_{t,i}}[\ell_{t,i}] \text{ and } i^* := \operatorname{argmin}_{i \in [K]} \sum_{t=1}^T \mu_{t,i^*}$$

plays arm $a_t \in [K]$ determines losses $\{\ell_{t,i}\}_{i \in [K]}$ reveals loss ℓ_{t,a_t}

- Bounded case: $\{\ell_{t,i}\}_{i \in [K]} \in [0,1]^K$ Heavy-tailed case (this work): 1. ③ determines distributions $\{P_{t,i}\}_{i \in [K]}$ s.t. $\mathbb{E}_{\ell_{t,i} \sim P_{t,i}}[|\ell_{t,i}|^{1+\nu}] \leq u^{1+\nu}$ for every arm $i \in [K]$ and some **known** $u > 0, v \in (0,1]$ 2. $\ell_{t,i}$ is drawn from $P_{t,i}$ for every arm i

Depending on how loss distributions are determined, () is categorized as:

Depending on how loss distributions are determined, () is categorized as:

- (Oblivious) Adversarial regime: loss distributions $\{P_{t,i}\}_{t \in [T], i \in [K]}$ are determined arbitrarily ahead of time with full knowledge on 1

Depending on how loss distributions are determined, () is categorized as:

- (Oblivious) Adversarial regime: loss distributions $\{P_{t,i}\}_{t \in [T], i \in [K]}$ are determined arbitrarily ahead of time with full knowledge on 1
- **Stochastic** regime: the loss distribution of each arm is fixed over time, i.e., $P_{1,i} = \ldots = P_{T,i}, \forall i \in [K]$

Depending on how loss distributions are determined, () is categorized as:

- (Oblivious) Adversarial regime: loss distributions $\{P_{t,i}\}_{t \in [T], i \in [K]}$ are determined arbitrarily ahead of time with full knowledge on 1
- **Stochastic** regime: the loss distribution of each arm is fixed over time, i.e., $P_{1,i} = \ldots = P_{T,i}, \forall i \in [K]$

BOBW: one single **1** ensures both optimal $O(T^{\frac{v}{1+v}})$ regret in adv. regime and $O(\log T)$ regret in sto. regime

Algorithm	Adversarial	Stochastic	
Lower bound [Bubeck et al., 13]	$\Omega(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$\Omega(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	
Robust UCB [Bubeck et al., 13]	N/A	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	
HT-INF [Huang et al., 22]	$O(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	

The **BOBW** guarantee of **HT-INF** [Huang et al., 22] requires the following "**Truncated Non-negative Losses**" (*TNL*) assumption (with $1[\cdot]$ denoting the indicator function): > M]] $\geq 0, \forall M > 0, t \in [T].$

$$\mathbb{E}_{\ell_{t,i}^* \sim P_{t,i^*}} [\ell_{t,i^*} \cdot 1[|\ell_{t,i^*}|]$$

The **BOBW** guarantee of **HT-INF** [Huang et al., 22] requires the following "**Truncated Non-negative Losses**" (*TNL*) assumption (with $1[\cdot]$ denoting the indicator function): > M]] $\geq 0, \forall M > 0, t \in [T].$

$$\mathbb{E}_{\ell_{t,i}^* \sim P_{t,i^*}} [\ell_{t,i^*} \cdot 1[|\ell_{t,i^*}|]$$

Without **TNL**, there is **NO v** with optimal regret even solely for the adv. regime

$$\mathbb{E}_{\ell_{t,i}^* \sim P_{t,i^*}} [\ell_{t,i^*} \cdot 1[|\ell_{t,i^*}|]$$

Handling heavy tails without **TNL** would further allow us to enjoy:

- The **BOBW** guarantee of **HT-INF** [Huang et al., 22] requires the following "**Truncated Non-negative Losses**" (*TNL*) assumption (with $1[\cdot]$ denoting the indicator function): > M]] $\geq 0, \forall M > 0, t \in [T].$
- Without **TNL**, there is **NO v** with optimal regret even **solely** for the adv. regime

The **BOBW** guarantee of **HT-INF** [Huang et al., 22] requires the following "**Truncated Non-negative Losses**" (**TNL**) assumption (with $1[\cdot]$ denoting the indicator function): > M]] $\ge 0, \forall M > 0, t \in [T].$

$$\mathbb{E}_{\ell_{t,i}^* \sim P_{t,i^*}} [\ell_{t,i^*} \cdot 1[|\ell_{t,i^*}|]]$$

- Without TNL, there is NO ____ with optimal regret even solely for the adv. regime
- Handling heavy tails without **TNL** would further allow us to enjoy:
 - 1. The first optimal regret in the adv. regime when observed losses are contaminated by the Huber model

The **BOBW** guarantee of **HT-INF** [Huang et al., 22] requires the following "**Truncated Non-negative Losses**" (**TNL**) assumption (with $1[\cdot]$ denoting the indicator function): > M]] $\ge 0, \forall M > 0, t \in [T].$

$$\mathbb{E}_{\ell_{t,i}^* \sim P_{t,i^*}} [\ell_{t,i^*} \cdot 1[|\ell_{t,i^*}|]]$$

- Without **TNL**, there is **NO C** with optimal regret even solely for the adv. regime
- Handling heavy tails without **TNL** would further allow us to enjoy:
 - 1. The first optimal regret in the adv. regime when observed losses are contaminated by the Huber model
 - 2. The first **BOBW** regret when losses are protected under **pure Local Differential Privacy (LDP)**

Key Question

In heavy-tailed MAB, are there any fundamental barriers to the worst-case optimal regret in the adversarial regime and the BOBW guarantee?

Algorithm	Adversarial	Stochastic	TNL-free	High-prob.
Lower bound [Bubeck et al., 13]	$\Omega(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$\Omega(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	N/A	N/A
Robust UCB [Bubeck et al., 13]	N/A	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$		
HT-INF [Huang et al., 22]	$O(uK^{\frac{1}{1+v}}T^{\frac{v}{1+v}})$	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	X	×
OMD-LB-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	N/A		
SAO-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$O(\frac{K\log(K)(\log T)^4}{(\Delta)^{1/\nu}})$		
		$\Delta := \min_{i:\Delta_i > 0} \Delta_i$		

Algorithm	Adversarial	Stochastic	TNL -free	High-prob.
Lower bound [Bubeck et al., 13]	$\Omega(uK^{\frac{1}{1+v}}T^{\frac{v}{1+v}})$	$\Omega(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	N/A	N/A
Robust UCB [Bubeck et al., 13]	N/A	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$		
HT-INF [Huang et al., 22]	$O(uK^{\frac{1}{1+v}}T^{\frac{v}{1+v}})$	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	×	×
OMD-LB-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	N/A		
SAO-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$O(\frac{K\log(K)(\log T)^4}{(\Delta)^{1/\nu}})$		
		$\Delta := \min_{i:\Delta_i > 0} \Delta_i$		

Algorithm	Adversarial	Stochastic	TNL-free	High-prob.
Lower bound [Bubeck et al., 13]	$\Omega(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$\Omega(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	N/A	N/A
Robust UCB [Bubeck et al., 13]	N/A	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$		
HT-INF [Huang et al., 22]	$O(uK^{\frac{1}{1+v}}T^{\frac{v}{1+v}})$	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	X	×
OMD-LB-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	N/A		
SAO-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$O(\frac{K\log(K)(\log T)^4}{(\Delta)^{1/\nu}})$		
		$\Delta := \min_{i:\Delta_i > 0} \Delta_i$		

Algorithm	Adversarial	Stochastic	TNL -free	High-prob.
Lower bound [Bubeck et al., 13]	$\Omega(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$\Omega(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	N/A	N/A
Robust UCB [Bubeck et al., 13]	N/A	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$		
HT-INF [Huang et al., 22]	$O(uK^{\frac{1}{1+v}}T^{\frac{v}{1+v}})$	$O(\sum_{i:\Delta_i>0} \frac{\log T}{(\Delta_i)^{1/\nu}})$	X	X
OMD-LB-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+v}}T^{\frac{v}{1+v}})$	N/A		
SAO-HT (This work)	$\tilde{O}(uK^{\frac{1}{1+\nu}}T^{\frac{\nu}{1+\nu}})$	$O(\frac{K\log(K)(\log T)^4}{(\Delta)^{1/\nu}})$		
		$\Delta := \min_{i:\Delta_i > 0} \Delta_i$		

High-prob. bound:

• is stronger than expected bound

• implies high-prob. bound even in the **adaptive** adv. regime **5** (in which loss distributions could depend on the history)

7

BOBW guarantee without **TNL** assumption

1. In heavy-tailed MAB, we achieve the first optimal adv. guarantee and the first

- 1. In heavy-tailed MAB, we achieve the first optimal adv. guarantee and the first **BOBW** guarantee without **TNL** assumption
- 2. By relaxing **TNL**, we also achieve the first optimal adv. guarantee in the Huber contamination model and the first BOBW guarantee under pure LDP

- 1. In heavy-tailed MAB, we achieve the first optimal adv. guarantee and the first **BOBW** guarantee without **TNL** assumption
- 2. By relaxing **TNL**, we also achieve the first optimal adv. guarantee in the Huber contamination model and the first BOBW guarantee under pure LDP
- 3. All the guarantees above hold with high probability, and hence have the potential to handle adaptive adversaries of

