

ProSST: Protein Language Modeling with Quantized Structure and Disentangled Attention

Mingchen Li^{1,2,3}, Yang Tan ^{1,2,3}, Xinzhu Ma², Bozitao Zhong¹, Huiqun Yu³, Ziyi Zhou¹, Wanli Ouyang² Bingxin Zhou¹, Pan Tan ^{1,2,3}, Liang Hong^{1,2}

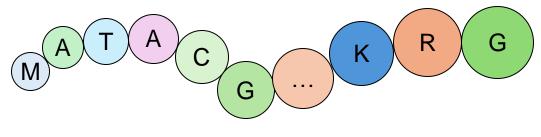
¹Shanghai Jiao Tong University

- ² Shanghai Artificial Intelligence Laboratory
- ³ East China University of Science and Technology

Introduction

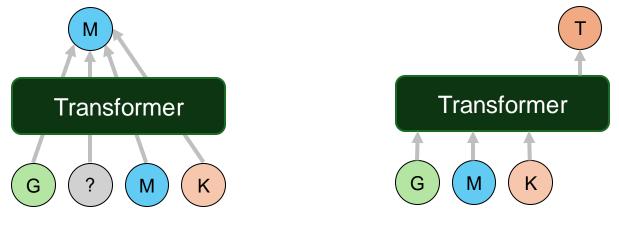
01

• Proteins can be represented as sequences of tokens composed of 20 types of amino acids.



Protein Sequence (Amino acid string)

 Protein language models, pre-trained on databases with millions of protein sequences with BERT or GPT tasks, have become fundamental tools for protein function prediction.



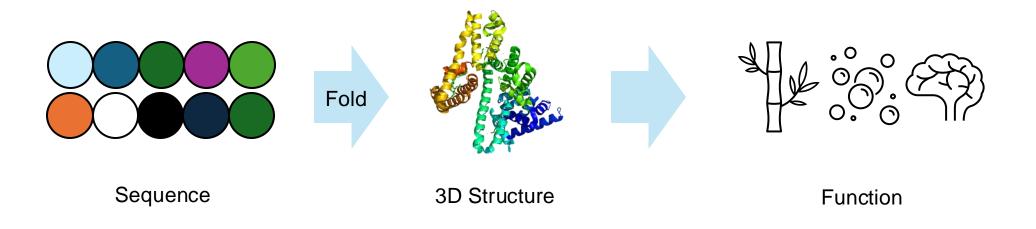
BERT-Style Pre-training (Masked token prediction)

GPT-Style (Next token prediction)

Introduction

02

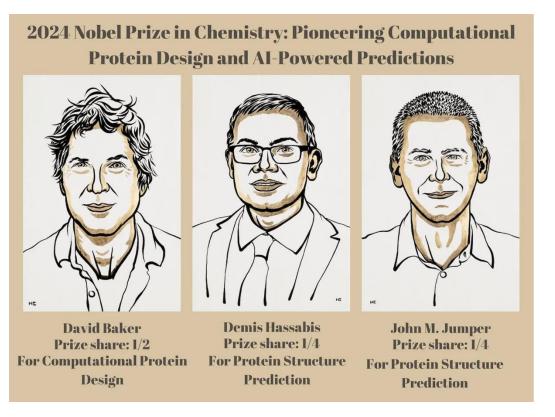
- However, an essential property of proteins is that they form 3D structures, and this structure determines the protein's function.
- Only using amino acid token sequences may be insufficient.



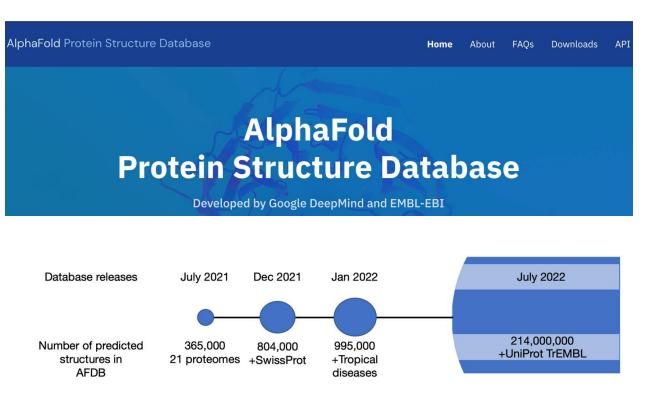
 Previous protein language models did not consider the 3D structure because structure data is hard to gather.

03

 Luckily, AlphaFold 2 (which has won the 2024 Nobel Prize in Chemistry) can predict protein structures and has increased the protein structure database to millions, making it possible to develop structure-aware pre-traind protein language models.

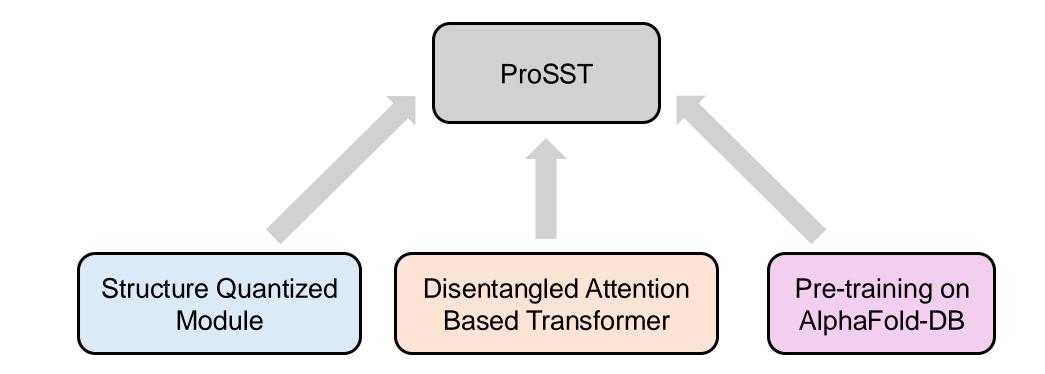


2024 Nobel Prize in Chemistry

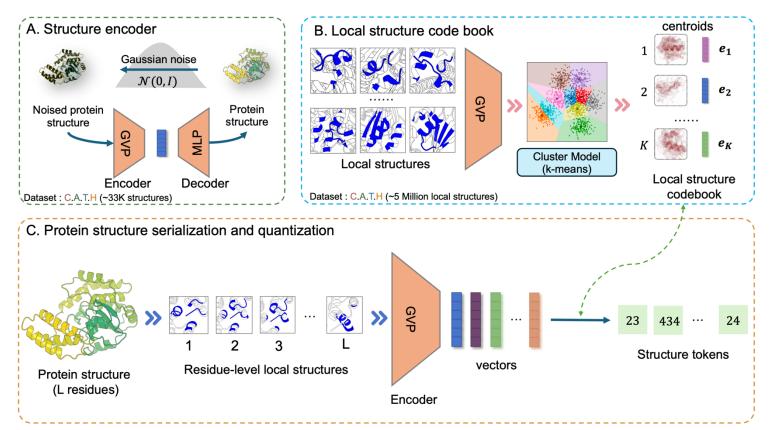


Barrio-Hernandez, et al. Nature. 2023. *AlphaFold Database*

ProSST (**Pro**tein **S**equence-**S**tructure **T**ransformer) is a structure-aware protein language model with structure quantization and disentangled attention.



Protein Structure Quantization



05

ProSST vs Foldseek (Kempen et al. 2024.)

	Foldseek	ProSST
Structure vocab size	20	2048
Local structure	3 residues	Up to 40 residues
Network	MLP	GVP-GNN
Training	VQ-VAE	DAE + k-means

Figure 1: The pipeline of structure quantization. (A) Training of the structure encoder. (B) Local structure clustering and labeling. (C) Converting a protein structure to structure token sequence.

Why We Do Structure Quantization?

Reason #1

The Transformer is the most commonly used model for pretraining. (Scaling Ability)

Reason #2

The structures are all predicted by AlphaFold 2.

The transformer model is designed for discrete data.

We need structure quantization.

AlphaFold2 is a deep learning model. It may have some latent patterns. Directly using these predicted structures causes over-fitting

Protein structure quantization is a good regularization choice.

We need structure regularization.

Reason #3

Discrete structure is convenient to use and storage for large-scale pre-training.

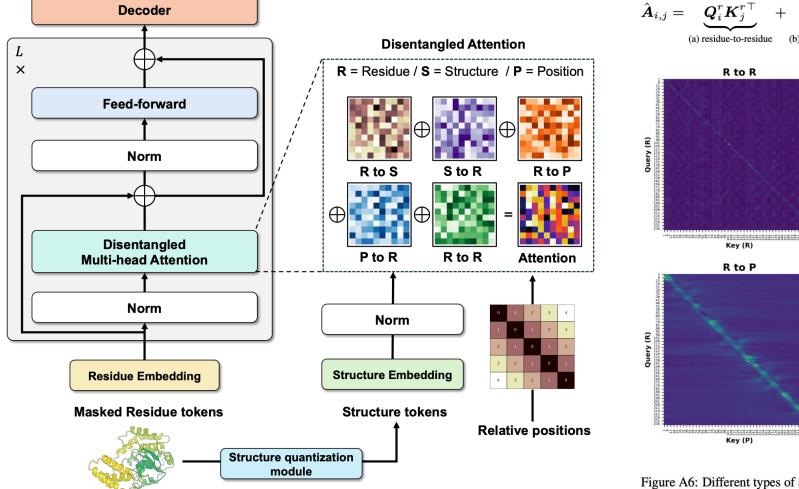
Goal: To pre-train a structure-aware protein language model on the large-scale protein structure database (AFDB).

06

Disentangled Attention-based Transformer

Un-masked Residue tokens

07



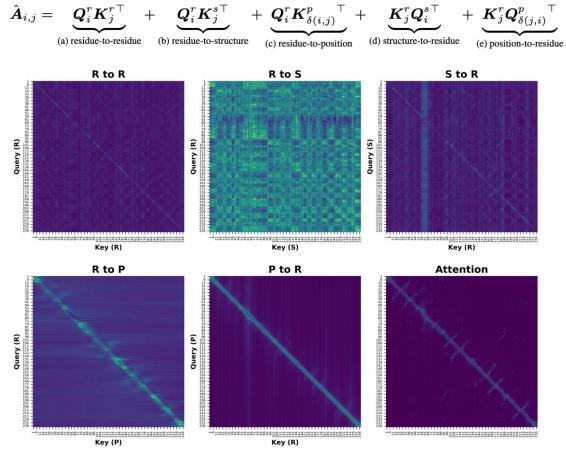
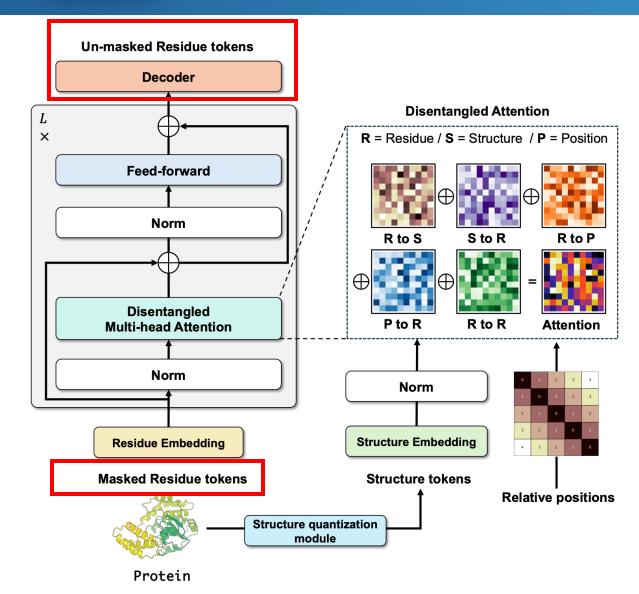


Figure A6: Different types of attentions on Green Fluorescent Protein (GFP). These attentions are the average of each head in the final layer of the Transformer.

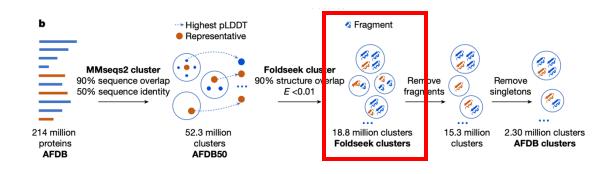
Protein

80

Pre-training ProSST on AFDB



Pre-training Data (18 Million Structures)



Barrio-Hernandez, et al. Nature. 2023.

Pre-training Objective:

$$\mathcal{L}_{MLM} = E_{\boldsymbol{x} \sim \boldsymbol{X}} E_{\boldsymbol{M}} \sum_{i \in \boldsymbol{M}} -\log p(\boldsymbol{x}_i | \boldsymbol{x}_{/\boldsymbol{M}}, \boldsymbol{s})$$

Masked language modeling on the residue tokens.

Results (Transfer Learning)

09

		DeepLoc	Metal Ion Binding	Thermostability	GO-MF	GO-BP	GO-CC
Model	# Params	Acc% \uparrow	Acc $\%$ \uparrow	$ ho_s$ \uparrow	F1-Max ↑	F1-Max ↑	F1-Max ↑
ESM-2	650M	91.96	71.56	0.680	0.670	0.473	0.470
ESM-1b	650M	92.83	73.57	0.708	0.656	0.451	0.466
MIF-ST	643M	91.76	75.08	0.694	0.633	0.375	0.322
GearNet	42M	89.18	71.26	0.571	0.644	0.481	0.476
SaProt-35M	35M	91.97	74.29	0.692	0.642	0.431	0.418
SaProt-650M	650M	93.55	75.75	0.724	0.682	0.486	0.479
ESM-GearNet	690M	93.55	74.11	0.651	0.676	0.516	0.507
ProSST	110 M	$94.32(\pm 0.10)$	$76.37 (\pm 0.02)$	$0.726(\pm 0.04)$	$0.682 (\pm 0.003)$	$0.492(\pm 0.004)$	0.501(±0.002)

Table 2: Comparison of supervised fine-tuning on downstream tasks. ρ_s denotes the Spearman correlation coefficient.

Results (Zero-shot mutant effect prediction)

10

Model	Model Type	$ ho_s$ \uparrow	NDCG \uparrow	Top-recall \uparrow
EVE [49]		0.439	0.781	0.230
EVmutation [53]		0.395	0.777	0.222
DeepSequence [51]	Evolution-based	0.407	0.774	0.225
WaveNet [50]	Evolution-based	0.373	0.761	0.203
GEMME [47]		0.457	0.777	0.211
MSA-Transformer [48]		0.434	0.779	0.217
Tranception [21]		0.434	0.779	0.220
RITA [44]		0.372	0.751	0.193
UniRep [45]		0.190	0.647	0.139
ESM-1v [6]	Sequence-based	0.374	0.732	0.211
ESM-2 [7]	-	0.414	0.747	0.217
ProGen2 [22]		0.391	0.767	0.199
VESPA [46]		0.394	0.759	0.201
ESM-IF [37]	Invence folding	0.422	0.748	0.223
MIF-ST [38]	Inverse-folding	0.401	0.765	0.226
Trancepiton-EVE [52]		0.457	0.786	0.230
ESM-1v* [6]	Ensemble Models	0.407	0.749	0.211
DeepSequence* [51]		0.419	0.776	0.226
SaProt [14]		0.457	0.768	0.233
ProSST	Sequence-Structure models	0.504	0.777	0.239

Table 1: Comparison of zero-shot mutation prediction performance on ProteinGYM benchmark [43] between ProSST and other models. ρ_s is the Spearman rank correlation.

Ablation Results (Quantized structure)

11

	DeepLoc	ProteinGYM			Pretraining
	Acc% \uparrow	$ ho_s \uparrow$	NDCG \uparrow	Top-Recall ↑	Perplexity \downarrow
ProSST (K=4096)	93.88 (±0.15)	0.498	0.773	0.233	8.880
ProSST (K=2048)	94.32 (±0.10)	0.504	0.777	0.239	9.033
ProSST (K=1024)	93.43 (±0.15)	0.485	0.760	0.231	9.333
ProSST (K=512)	93.70 (±0.16)	0.471	0.759	0.223	9.577
ProSST (<i>K</i> =128)	93.14 (±0.04)	0.469	0.753	0.228	10.021
ProSST (<i>K</i> =20)	93.05 (±0.13)	0.438	0.744	0.210	10.719
ProSST (K=1)	89.48 (±0.24)	0.390	0.738	0.181	12.182
ProSST (<i>K</i> =0)	89.77 (±0.26)	0.392	0.741	0.184	12.190
ProSST (Foldseek)	93.08 (±0.22)	0.468	0.759	0.228	10.049
ProSST (DSSP)	93.16 (±0.16)	0.439	0.760	0.204	10.009

Table 3: Ablation studies on quantized structure. We first show the performance of our models with K centroids of local structures. ProSST (K=0) refers to the model without structure token sequence. We also replace the proposed quantization method with existing Foldseek and DSSP, and show the results of these variants.

Conclusion & Future work

• We propose a protein structure quantization module, which can convert a protein structure into a sequence of discrete tokens

• We propose a disentangled attention Transformer to learn the relationship between protein structure and sequence.

• We pre-train our model on 18 millions of protein structures and it has achieved good performance in multiple tasks.

Future work

12

Develop larger model with larger database.

Study the structure search ability of our quantization module.