

DETAIL: TASK DEMONSTRATION ATTRIBUTION FOR INTERPRETABLE IN-CONTEXT LEARNING

Presenter: Zijian ZHOU

NeurIPS 2024

Large Language Models

Use prompts to help improve model's response to user query

Overview

Large Language Models

Overview

In-context Learning (ICL)

Source: Brown et. al., Language Model are Few-shot Learners, in NeuRIPS 2020.

LLM learns to perform arithmetic and manipulate spelling During **test-time** using **ICL**.

Overview

An analogy between classic ML and ICL.

Classic ML: Requires training data points to train ML.

ICL: Task demonstrations supplied to during inference.

Overview

In ICL, we are interested in

- Save cost => Demonstration Selection
- Speed => Computable at inference time
- Interpretable => Can we interpret the attribution score?

Overview

Can we use existing attribution methods for ICL?

- Quality => Good Demonstration Selection
- Speed => Computable at inference tic
- Interpretable \Rightarrow Can we interpret the attribution core?

Overview

Using DETAIL for ICL

- Quality => Good Demonstration Selection
- Speed => Computable at inference time
- Interpretable => Can we interpret the attribution score?

Overview

Influence Function [1]: Computes the "influence" of a training data point on the prediction of a test data point.

$$
\mathcal{I}(z_i, z_{\text{test}}) \coloneqq \nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} \mathcal{I}_{\text{reg}}(z_i) = \nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z_i, \hat{\theta})
$$

[1] Koh et. al., Understanding Black-box Predictions via Influence Functions, ICML 2017

Preliminaries

Influence Function [1]: Computes the "influence" of a training data point on the prediction of a test data point.

[1] Koh et. al., Understanding Black-box Predictions via Influence Functions, ICML 2017

Preliminaries

Can we apply the influence function to attribute ICL demonstrations?

Preliminaries

Can we apply the influence function to attribute ICL demonstrations?

Not directly. There is no "gradient" for ICL.

$$
\mathcal{I}(z_i, z_{\text{test}}) \coloneqq \nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} \mathcal{I}_{\text{reg}}(z_i) = \boxed{\nabla_{\theta} L(z_{\text{test}}, \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z_i, \hat{\theta})}
$$

Preliminaries

Reflection: How does ICL achieves "learning"?

Preliminaries

Reflection: How does ICL achieves "learning"?

- While there is no explicit parameter update,
- There is indeed an implicit gradient descent.

Preliminaries

Preliminaries

Equivalence between gradient descent and ICL

Source: Oswald et. al., Transformers Learn In-Context by Gradient Descent, ICML 2023

Preliminaries

Preliminaries

Transformers can also learn non-linear regression tasks using a deep representation of data

Specific formulation [1]:

Proposition 2. Given a Transformer block i.e. a MLP $m(e)$ which transforms the tokens $e_j = (x_j, y_j)$ followed by an attention layer, we can construct weights that lead to gradient descent dynamics descending $\frac{1}{2N}\sum_{i=1}^{N}||Wm(x_i)-y_i||^2$. Iteratively applying Transformer blocks therefore can solve kernelized least-squares regression problems with kernel function $k(x, y) = m(x)^\top m(y)$ ind<mark>uced by the MLP m(.).</mark>

[1] Source: Oswald et. al., Transformers Learn In-Context by Gradient Descent, ICML 2023

Preliminaries

DETAIL

A (L2 regularized) kernelized regression:

$$
L(x,y)=[m(x)\beta-y]^2+\lambda\beta^\top\beta\ .
$$

 $m(x)$: the hidden state of a transformer layer

- β : weight factor of the kernelized feature
- λ : a regularization term

DETAIL

DETAIL

A (L2 regularized) kernelized regression:

$$
\boxed{L(x,y)}\!\!\!\!= [m(x)\beta-y]^2+\lambda\beta^\top\beta\ .
$$

DETAIL

Reformulate the influence function

$$
\boxed{L(x,y)} = [m(x)\beta - y]^2 + \lambda\beta^{\top}\beta.
$$

$$
\mathcal{I}(z_{\text{test}},z) \coloneqq \frac{\nabla_{\beta}L(x_{\text{test}},y_{\text{test}})^{\top}}{\nabla_{\text{reg}}(z)}
$$

$$
= n[m(x_{\text{test}})^{\top}(m(x_{\text{test}})\beta - y_{\text{test}}) + \lambda\beta](K + \lambda I)^{-1}[m(x)^{\top}(m(x)\beta - y) + \lambda\beta]
$$

DETAIL

ICL demonstrations

DETAIL

DETAIL

Empirical investigation

Custom transformer: predicting the label of MNIST digits using ICL

Experiments

Remove some of the ICL demonstrations according to DETAIL (test influence) score.

Experiments

Empirical investigation

Remove some of the ICL demonstrations according to DETAIL (test influence) score.

Experiments

Moving on to LLM

We consider two ICL-related tasks.

- Noisy label detection
- Demonstration order optimization
- Demonstration curation

Experiments

ICL demonstrations may contain corrupted samples.

e.g.

1 + 3 = 4; ## 2 + 5 = 7; ## 4 + 2 = 8; Corrupted sample! ## 10 – 3 = 7; ## 42 + 2 = 44; ## 23 + 2 = [__]

Experiments

Use DETAIL (self influence) to detect corrupted samples. High DETAIL (self) score => bad sample.

Much better (both quality and speed) than Leave-one-out (LOO).

Experiments

Order Optimization

Different orders of demonstrations can lead to varied performance.

Experiments

Order Optimization

We should place demonstrations with bad quality at the two ends

Experiments

We should place demonstrations with high DETAIL scores (self influence) at the two ends

Experiments

We can also use DETAIL scores (test influence) to curate effective demonstrations against a test query set.

Curating using DETAIL shows consistent improvement on various models.

Experiments

Comparison with other methods

Our method is superior both in terms of speed and attribution quality.

Experiments

Transferability

Many LLMs we use are black-box

DETAIL requires access to the model internal mechanism

Experiments

Transferability

DETAIL scores obtained on white-box models can be TRANSFERRED to black-box models!

Experiments

DETAIL scores obtained on white-box models can be TRANSFERRED to black-box models!

Experiments

Discussions

• DETAIL is a fast, accurate, and interpretable attribution technique designed for transformers.

Discussion

Discussions

- DETAIL is a fast, accurate, and interpretable attribution technique designed for transformers.
- One limitation is to need to access the model internal mechanism, although empirically, the scores are transferable.

Discussion

Discussions

- DETAIL is a fast, accurate, and interpretable attribution technique designed for transformers.
- One limitation is to need to access the model internal mechanism, although empirically, the scores are transferable.
- Can it work for more generalized prompting (e.g. CoT)?

Discussion

Thank you :)